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Abstract. Inference of hidden classes in stochastic block models is a
classical problem with important applications. Most commonly used methods
for this problem involve naive mean field approaches or heuristic spectral
methods. Recently, belief propagation was proposed for this problem. In this
contribution we perform a comparative study between the three methods on
synthetically created networks. We show that belief propagation shows much
better performance when compared to naive mean field and spectral approaches.
This applies to accuracy, computational efficiency and the tendency to overfit the
data.
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1. Introduction

A large portion of the intriguing emergent phenomena of complex many particle systems
is a consequence of the structure of interactions among their constituents. Bluntly, a
soup of neurons does not have the same capabilities as a specifically woven neural net.
Similar considerations apply to social systems, information systems, biological systems or
economical systems where the patterns of interaction are far from random and result in
complex system-wide phenomena.

Fueled by a flood of readily available relational data, recent years have seen a surge
of research focused on structural properties of networks as a first step to understanding
some of the properties of complex systems and ultimately their function [5, 17].

Interestingly, it is often much easier to map the network of interactions than to explain
its function. Prime examples of this phenomenon are protein interaction networks. Modern
biotechnology allows one to automate charting the matrix of pairwise binding relations for
all proteins produced by an organism, i.e. do two proteins form a stable link or not [23]. As
proteins generally operate in complexes (agglomerates of several proteins) such a network
of pairwise interactions encodes latent information about protein function. Hence, it makes
sense to use network structure to make inferences about protein function or plan and guide
other wet-lab experiments aimed at elucidating function [19]. Similar considerations apply
to the analysis of social networks, where interactions are recorded in online data streams
but information on the properties of the actual agents remains hidden behind pseudonyms
or avatars [25].

doi:10.1088/1742-5468/2012/12/P12021 2


http://dx.doi.org/10.1088/1742-5468/2012/12/P12021

Comparative study for inference of hidden classes in stochastic block models

Hence, the hypothesis behind network analysis is that nodes in a network which have
similar patterns of interaction are likely to have common properties or perform similar
functions. Discovering topological similarities and differences thus hints at the existence
of possible latent features of the nodes in the network that merit further analysis.

Being a first step to more detailed analysis, such exploratory analysis is often highly
consequential. It is important to thoroughly understand the algorithms used in every
detail and to be aware of possible limitations and pitfalls. This contribution aims at
raising this awareness using the simple example of inferring the parameters of a Poisson-
mixture model, the so-called stochastic block model (SMB) [9, 6], in undirected unweighted
unipartite networks. The conclusions we draw, however, extend well beyond this example
and we discuss these consequences at the end of the paper.

Our contribution is then organized as follows: first we introduce the stochastic block
model as a way to capture density fluctuations in relational datasets and infer latent
variables. Next, we discuss the theoretical limitations that any inference technique for such
a model must face: namely a sharp transition between a parameter region where inference
is feasible and a parameter region where inference is impossible. Third, we briefly review
spectral approaches and the expectation-maximization (EM) algorithm in conjunction
with the naive mean field approach. We then introduce a formulation of the EM
algorithm based on belief propagation. Fourth, we compare the performance of these three
approaches on ensembles of benchmark networks from a region near the above-mentioned
feasible-infeasible transition in the parameter space. In this region, particularly difficult
problem instances can be found that allow one to highlight performance differences.
Finally, we discuss our findings and the possible extensions and consequences to other
models and inference tasks.

2. The stochastic block model

The simplest model of a network of N nodes and M undirected unweighted edges
between them is an Erdés-Rényi graph. It assumes that a link falls between any pair
of nodes (i,7) with constant probability p;; = po = 2M/[N(N — 1)], independently of
whether links exist between other pairs of nodes. Consequentially, large networks with
low link density py generated by this model have a Poissonian degree distribution with
mean degree (k) = po(N — 1). This model can already explain two main characteristics
of real world networks—their small world property of short average path lengths and
their connectedness even at low densities. Unfortunately, it cannot explain much more. In
particular, it fails to capture the large variance of link densities between groups of nodes
observed in many networks.

In real world networks, not all nodes are created equal and may represent entities of
very different properties or functions. Whether two nodes are linked often depends on these
properties. Consider the example of protein interaction again. Membrane proteins will
certainly bind to other membrane proteins to form stable membranes, but, for example, the
enzymes involved in various catalytic reactions should not stick to the cell membrane since
otherwise the interior of the cell would soon be depleted of these essential molecules [19]. In
an entirely different social context, one will certainly observe social interactions correlated
with the agents’ age, gender, possibly income or education. Social ties will depend on these
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qualities and thus network structure is indicative of node properties and may be used to
make corresponding inferences.

One of the simplest models capable of capturing the dependence of link probability on
node properties is the stochastic block model [9]. It assumes that each node i € {1,..., N}
is of one and only one of ¢ classes and ¢; = r is indicating the membership of node 7 in
class r € {1,...,q}. As before, nodes are linked independently, but now the probability
of node ¢ linking to node j depends on #; and t; alone, i.e. p;; = pt;,. One can easily
write down a probabilistic generative model for this sort of network. First, we assume
that nodes are assigned into ¢ classes randomly by a multinomial distribution with
parameters P(t; = r) = p,. Next, we specify the matrix of link probabilities between classes
prs € (0,1)7%7. Our set of parameter thus comprises of 8 = {q, p., prs}. The probability of
generating a specific {0, 1}V*V adjacency matrix A together with a specific assignment
of nodes into classes t is then given as:

N
P(Avt|9) = H [pézj(l - ptitj)(l_Aij):| Hptk' (1)
k=1

i<j

The expected average density of links in such a network is py = > .prprsps. If we were
able to observe the adjacency matrix A and class memberships t at unknown parameters,
equation (1) would give us the complete data likelihood of the parameters 6. It is then
easy to estimate the parameters #* which maximize (1):

1 1+ 0y
Pr = N Zéti,r Prs = Npr Nps _ ;Amdt T(St 5+ (2)

i ’I’S

With (1) being a member of the exponential family, these estimators are consistent,
efficient and the model is identifiable, i.e. the maxima are unique. In this contribution
we always assume that the correct number of classes ¢ is known.

However, in practical applications as discussed, the situation is often that we only
have access to the adjacency matrix A but not to the class labels t which are our primary
interest for explaining network structure and possibly function. Fortunately, under certain
circumstances we can still draw conclusions about these hidden variables using the toolbox
of statistical inference. What these circumstances are and how this is usually done will be
discussed in the following two sections.

3. General considerations

It is clear that the task of inferring the unobserved latent variables is only possible if the
preference matrix p,, shows sufficient ‘contrast’. If all entries were the same, i.e. p,.s = po,
then of course no method can perform any inference on the hidden variables. Conversely, if
Drs = Podr.s, then the network practically consists of several disconnected components and
inference reduces to the trivial task of identifying the component to which an individual
node belongs. Between these two extremes of impossible and trivial, there is a sharp
phase transition [20, 3, 2]. It divides the parameter space into a region where it is provably
impossible to infer the latent variables with an accuracy higher than guessing and a region
where it is possible with high accuracy.
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Theoretical analysis has shown that the transition persists in infinitely large networks
when they are sparse, i.e. the average degree per node does not grow with the system
size. In other words, networks in which the elements of p, scale as 1/N. In contrast, for
dense networks in which p,s; does not scale with N, considering larger networks means
considering proportionally larger average degrees; this will render even very small amounts
of variance in p,s detectable and thus let the region of impossible inference vanish [18].

In real applications, we cannot generally increase network size at constant parameters.
We will observe both the region of impossible and possible inference. However, the
parameter region of impossible inference will be smaller for denser networks, i.e. those
with higher average degree. Further, it has been shown that networks with parameters in
the vicinity of the transition point are the instances in which inference is hardest [3, 2].

As it is our aim to highlight performance differences between different inference
techniques for the SBM, we will focus our attention on instances in sparse graphs near the
transition from impossible to possible inference. Before we come to this analysis, however,
we will introduce the contestants.

4. Inferring stochastic block models

When inferring latent structure in data, one can take the route of statistical inference if
one can justify a statistical model to fit to the data, as we have done with the SBM. It
may also be sensible to use a simple dimensionality reducing heuristic. We consider both
of these approaches.

4.1. Spectral approaches

When dealing with high-dimensional data such as networks and searching for common
patterns of interactions, a natural strategy is to try reducing the dimensionality in such
a way that nodes with similar interaction partners are mapped to positions in some
low-dimensional space, while nodes with very different interaction partners should be
positioned far apart. One then uses standard clustering algorithms, such as k-means in
our case, originally developed for multivariate data and to analyze the nodes in their low-
dimensional embedding. This is the strategy behind all spectral techniques of network
analysis.

Let us consider the adjacency matrix A as a list of N measurements in an N-
dimensional feature space, each row describing one node in N dimensions, namely, its
relations to the other nodes. We could then apply a variant of multidimensional scaling
such as principal component analysis (PCA). We would subtract the means of the
measurements in each dimension, calculate the covariance matrix and find the directions of
maximum variance by an eigendecomposition of the covariance matrix. Finally, we would
project our data matrix onto the first ¢ principal components, i.e. those eigenvectors of
the covariance matrix corresponding to the largest eigenvalues.

A method similar in spirit has been introduced specifically for networks [15]. It differs
from PCA only slightly in that it not only removes the means of the rows, but, since
A is symmetric, also the means of the columns. This is to say, the original matrix A is
transformed into a so-called modularity matrix B via

ik
Ly (3)

Bij = Aij —
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where k; denotes degree of node . This modularity matrix B now has row-sums and
column-sums zero. Note that the terms k;k;/2M < 1 for sparse networks. Since B is
symmetric, the eigenvectors of a corresponding ‘covariance matrix’ C = BBT are the
eigenvectors of B and hence the projection of the modularity matrix onto the ‘principal
components’ is given directly by the components of the eigenvectors corresponding to the
largest magnitude eigenvectors of B. This approach has recently been claimed to be no
worse than any other approach [13] and we will evaluate this claim in this paper.

Another aspect of this method is worth mentioning. It is known that the best rank-¢
approximation to a symmetric matrix is given by its eigendecomposition, retaining only
the ¢ eigenvalues largest in magnitude. ‘Best’ here means in terms of reconstruction error
under the Frobenius norm. If V is a matrix the columns of which are the eigenvectors of
B ordered by decreasing magnitude of the corresponding eigenvalue, then the entries of
the optimal rank-g approximation B’ will be given by

q
Bj; =Y Vil V. (4)
r=1

So we see that Bj; is large when the rows 7 and j of V are parallel and all the considered
A with 7 € {1,...,q} are positive. In contrast, if all A, are negative, rows ¢ and j of
V should be anti-parallel to make Bj; large. Large positive eigenvalues are indicative of
block models with some p,,. large while large negative eigenvalues are indicative of block
models with some p,,. small in comparison to the average density of the network py. We can
conclude that when these cases mix, it will generally be very difficult to find an embedding
that maps nodes from a network with similar interaction patterns to positions that are
close in space using spectral decomposition of the modularity matrix.

Instead of using an embedding that minimizes a reconstruction error, one can also
introduce a pairwise similarity measure based on the network topology and then find
an embedding of the N x N similarity matrix such that ‘similar nodes’ are ‘close’. This
approach is implemented in the widely used diffusion map [11].

Assume a random walker is traversing the network. When at node i, the walker will
then move to any node j # ¢ with probability p;; = A;;/k;. Here, k; = >_;Aij is the number
of neighbors of node . We can identify in p;; as the entries of an N x N row stochastic
transition matrix P = D7'A, where D is a diagonal matrix with D;; = k;. The probability
that the random walker, after starting in node ¢, reaches node j in exactly t steps is then
given as p;(j|i) = Pj;. The stationary distribution of the random walker on the N nodes
of the network is given by 7}, = limy_.p;(i|j) = k;/2M. Equipped with these definitions,
one can define a ‘diffusion distance’ between nodes ¢ and j via

k
k

o

This is a sensible measure of topological distance between nodes ¢ and j as it measures a
difference in the distributions of arrival sites when the random walker starts from either
¢ or j. One can find an optimal embedding such that the Fuclidean distance in the low-
dimensional space matches the diffusion distance to any desired precision. The coordinates
of this embedding are given by the entries in the eigenvectors corresponding to the ¢ largest
non-trivial right eigenvectors of P scaled by the corresponding eigenvalue to power ¢. Since
the largest right eigenvalue of P is always Ay = 1 and the corresponding eigenvector is
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constant, it is considered trivial. If a match to relative precision d is required we must
include all eigenvectors v, of P with |\.|" > §|\2|", where the ) are the right eigenvalues of
P. As all eigenvalues of P are smaller in magnitude than 1, A\ dominates for large ¢t and
thus the large scale structural features. In this case, large negative eigenvalues are not a
problem, since the embedding is such that the Euclidean distance between the positions of
the nodes in the low-dimensional space approximates the topological distance and not the
scalar product dressed with the eigenvalues as in the case of the spectral decomposition.

4.2. Expectation—maximization

The goal of maximum likelihood inference aims to estimate parameters for a generative
model such that the observed data becomes maximally likely under this model. Our
generative model (1) gives us the probability of observing the network and the node
classes. If only the network is observed we need to trace out the node classes. Specifically,
we seek

0" = argmaxy,L(0) = logZP(A, t]0). (6)
t

The sum over all possible assignments of nodes into latent classes is computationally
intractable and so one resorts to defining a lower bound on the log-likelihood £(6) which
can be both evaluated and maximized. This bound is known as the free energy

=) P(t)log P(A, t]6) — ZP )log P(t (7)
t

The free energy F is a functional of a distribution over the latent variables P(t) and the
model parameters 6. It is easily shown that F is indeed a lower bound on £(6):

F(P(t).6) = —Dxr(P(t) || P(t|A,8)) + L(9) (8)

and that if 7 has a (global) maximum in (P*(t), 8*) then £(6) also has a (global) maximum
in 6* [14]. The procedure for maximizing F in turn with respect to its two arguments is
known as the expectation-maximization algorithm [4]. Specifically, maximizing F with
respect to P(t) at fixed 6 is known as the ‘E-step’, while maximizing F with respect to
at fixed P(t) is known as the ‘fM-step’. Ideally, the E-step tightens the bound by setting
P(t) = P(t|A,0), but for our model (1) the calculation of P(t|A,8) is also intractable.
Note that this is in contrast to estimating the parameters of a mixture of Gaussians where,
for observed data X, we can easily evaluate P(t|X,0).

Two routes of approximation now lie ahead of us: the first one is to restrict ourselves
to a simple factorizable form of P(t) = [[,P(¢;) which leads to the mean field approach.
The second route leads to belief propagation.

4.3. E-step and M-steps using the naive mean field

We shall start by the mean field equations as used for the SBM for instance in [1] or [8]. In
addition to the assumption of a factorizing P(t), one introduces the following shorthand:

Pl = (t = r). Then, the free energy in the naive mean field approximation is given by
Far= Y <Au log 1 —o log(1 —st)) Vil + ) Pi(logpr — log ¥}). (9)
1<j,rs rs @7
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This free energy is to be maximized with respect to the 1! by setting the corresponding
derivatives to zero and we obtain a set of self-consistent equations the v, have to satisty
at VyJF = 0:

hi
i prer i Drs ;
¢T == hr = E Aij log WS + E (N - 5rs)ps 10g<1 _prs)' (10)
ngse s s 1— Drs s

The beauty of this approach is its apparent computational simplicity, as an update of
P(t) can be carried out in O(N(k)q*) steps. Setting VyFyr equal to zero and observing
the constraint that ) p, = 1, we derive the following equations for the M-step:

1 ; Doici Agbiab]
r = X7 72« rs — T —< . i 11
p Nzi:¢ p S (11)

Note the similarities between equations (11) and (2).

4.4, E-step and M-steps using belief propagation

Belief propagation equations for mixture models were used by several authors, see e.g. [7,
22, 21]. Several important nuances in the algorithm make us adopt the belief propagation
algorithm for SBM as developed in [3, 2], the implementation can be dowloaded at http:
//mode net.krzakala.org/.

There are several ways one can derive the belief propagation equations (see for
instance [26]). One way is from a recursive computation of the free energy under the
assumption that the graphical model is a tree. Application of the same equations on loopy
graphical models is then often justified by the fact that correlations between variables
induced by loops decay very fast and are hence negligible in the thermodynamic limit.
In the case treated here, even when the adjacency graph A;; is sparse, the graphical
model representing the probability distribution (1) is a fully connected graph on N nodes.
However, for sparse networks the interaction for nodes that are not connected by an
edge is weak 1 — p,s =~ 1 and the network of strong interactions is locally tree-like. This
puts us in the favorable situation of decaying correlations. This was used in [3, 2] to
argue heuristically that in the limit of large /N the belief propagation approach estimates
asymptotically exact values of the marginal probabilities 1’ and of the log-likelihood; in
a special case of block model parameters this has been proved rigorously in [12].

To write the belief propagation equations for the likelihood (1) we define conditional
marginal probabilities, or messages, denoted .77 = P(t; = r|A \ A;;,6). This is the
marginal probability that the node ¢ belongs to group r in the absence of node j. In
the tree approximation we then assume that the only correlations between is neighbors
are mediated through ¢, so that if ¢ were missing—or if its group assignment was fixed—the
distribution of its neighbors’ states would be a product distribution. In that case, we can
compute the message that i sends j recursively in terms of the messages that i receives
from its other neighbors & [3, 2J:

¢7,—>j _ preher]
r ZS psehg—n
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hHﬂ—}jmgbj( ”;)&Vl—wﬂﬁ”l (13)

k#i,5

The marginal probability ¢ is then recovered from the messages using (10) and

"o [Z< ) <1—prs>wz”]. (19)

‘]757, ]‘_pT'S

Compared with equations (10), updating the belief propagation equations takes O(N2%¢?)
steps.

Most real world networks, however, are relatively sparse, i.e. the number of edges is
much smaller than N2. For such cases the BP equations can be simplified. To see this we
consider ¢,s = Np,s = O(1), in the limit N — oo terms o(/V) can be neglected as in [2], one
then needs to keep and update messages 1.7 only when A;; = 1. The update equation
for field h!~7 then is

N
th] = Z lOg (Z Crswkél> - %Z Zcrswfa (15)

kedi\j k=1 s

where i denotes is neighborhood. In order to get the marginal probability 1)’ one uses
equation (10) and

=Y o (z %W) et (16

kedi

Note that it is possible to implement the update of all fields A’ in O(N(k)q*) steps, thus
making the BP approach as fast the naive mean field. In order to do that, we compute the
second term in equation (15) once at the beginning and then we only add and subtract
the contributions to this term which have changed.

Once the fixed point of the BP equations is found, one uses the Bethe formula to
compute the free energy [26]

Fep = Z log Z" — Zlog (Zpsehi> — @, (17)

(ij)eE

where

20 =3 et
T8

Again the Bethe free energy is exact if the graphical model is a tree and is a very good
approximation to the true free energy in many practical cases—often a much better
one than the MF free energy. An important point is that the Bethe free energy is not
guaranteed to be a bound on the log-likelihood.

Setting VyFgp equal to zero and observing that the BP equations are stationarity
conditions for the Bethe free energy, one derives the following equations for the M-step of
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expectation—maximization

1 4 1 1 s :;—>j g—n' é—»j g—n‘

5. Performance comparison

We will compare the performance of the three approaches presented in the last section
on ensembles of test networks which have been generated from (1). Hence, we know the
true assignment of nodes into classes ¢; for all nodes i € {1,..., N}. Let us denote by
tf the estimates of group assignment that follow from the above algorithms. A simple
performance measure is then the ‘overlap’ between {¢;} and {¢;} defined as

1 «
Q= Nm;*x;é(tiﬂr(ti))' (19)

Since the t; can only be recovered up to permutation of the class labels, the maximum
over all possible permutations of m on ¢ elements is taken. Note that a trivial estimate
would be t} = argmax,p, Vi. Hence, only values of () > max,p, should be considered as
successful inference. In the following, we consider two cases: (1) parameters p,, and py,
are known and only the E-step is iterated until convergence to infer ¢}, (2) parameters
py; and py, ;. are unknown and full expectation-maximization is performed to estimate
parameters and ¢;.

5.1. Belief propagation versus mean field

To make a comparison of BP and MF we will assume in both approaches that the
parameters p,, prs, and the right number of groups ¢ are known. Both approaches
output the estimates of marginal probabilities .. In order to estimate the original group
assignment, we assign to each node its most-likely group, i.e.

tr = argmax, 1)’ (20)

If the maximum of ! is not unique, we choose at random from all the ¢; achieving the
maximum. We refer to this method of estimating the groups as marginalization. Indeed,
a standard result shows that it is the optimal estimator of the original group assignment
{t;} if we seek to maximize the number of nodes at which ¢; = t}.

In practical situations, when the true assignment is not known, one can also use the
estimates of the marginal probabilities 1’ to compute the confidence of the method about
the estimate ¢} defined as

1 .
= Nz%. (21)

An important remark is that if the marginals ¢ were evaluated exactly then in the large
N limit the overlap and confidence quantities agree, C' = (). In our tests the quantity
C — @ hence measures the amount of illusive confidence of the method. Values of C' — @
larger than zero are very undesirable as they indicate a misleading correlation, and give
illusive information on the amount of information reconstructed.
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Figure 1. Adjacency matrices representing the block structure used for
generating the various examples of the block model equation (1) in
this contribution. Rows and columns are ordered such that rows/columns
corresponding to nodes with the same t; are next to each other. From left to
right: a ¢ = 2 modular network, a core—periphery structure, and a ¢ = 4 modular
network.
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Figure 2. Comparison between the naive mean field (MF) and belief propagation
(BP) approaches to the E-step of expectation—maximization. All datapoints
correspond to networks with N = 10? nodes. The networks were generated
using ¢ = 4 groups, modular structure as sketched in left part of figure 1, and
Crr = Cin > Crs = Cout VS # 7. Left: true and illusive overlap ) and C for inference
of the group assignment at different values of € = cout/cin. Note the transition
between a phase where inference of class membership is possible and where it
is not at e, = 0.43. Also note that MF is overfitting the data, showing large
illusive overlap C' in the region where inference is in fact impossible. Middle:
the number of iterations needed for convergence of the E-step for the problem
instances from the left part (we set the maximum number of iterations to be
1000). The computational effort is maximal at around €. for both methods, but
BP converges faster. Right: true and illusive overlap @) and C' at different values of
the average connectivity ¢ = (k) at fixed e = 0.35. Again, we observe a transition
between feasible and infeasible inference at (k).(€) and the over-confidence of MF
in the infeasible region.

To compare the performance of BP and MF, we generated networks from the ‘four
groups test’ of [16] with a large number of variables N, four groups ¢ = 4, average degree
¢ = po/N, and ratio € between the probability of being connected to a different group and
within the same group. In other words, € = oy /cin- See an example adjacency matrix in
figure 1. The results of inference using BP and MF are plotted in figure 2. From figure 2
we see several important points in which BP is superior over MF
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e BP estimate gives better agreement with the true assignment. In the left and right part
of figure 2 we see the following. In a region of large overlap, the two methods give the
same result. This can be understood from the form of the BP and MF equations that
become equivalent for very polarized marginals 1. In the region of very small overlap
both approaches converge to a fixed point that does not contain any information about
the original group assignment. However, for parameter values close to the possible-
impossible-inference phase transition the BP method gives larger overlap with the
true group assignment than MF'.

e BP is not over-confident. In the left and right part of figure 2 we compare the true
overlap to the confidence value (21). For BP the two agree, just as they should if
the marginals were evaluated exactly. In the MF approach, however, the confidence is
considerably larger than the true overlap. This means that in the whole region where
C — (@ > 0, MF is misleadingly confident about the quality of the fixed point it found.
The width of this region depends on the parameter values, but we observed that a
good rule of thumb is that if the overlap reached is not very close to 1, then the MF
method is unreliable.

e BP is faster. As we explained when we exposed the BP and MF equations, one iteration
takes a comparable time for both methods. In the middle part of figure 2 we plot the
number of iterations needed for convergence, we see that again around the phase
transitions region MF needs more iterations to converge, and hence is overall slower
that BP.

e BP does not converge to several different fixed points. Starting with randomly
initialized messages, BP converged to the same fixed point (up to small fluctuations)
in all the runs we observed. On the other hand in the region where the MF value of
confidence C differs from the true overlap Q MF converged to several different fixed
points depending on the initial conditions.

To summarize, BP for block model inference is superior to MF in terms of speed, of
quality of the result and does not suffer from over-confidence the way MF does. Note that
similar conclusions about BP compared to MF were reached for other inference problems
in e.g. [24, 22].

An important point is that so far, have discussed the situation of BP and MF
algorithms using the known and correct values of parameters p,, p,.s in the E-step
of expectation-maximization. Concerning the M-step, we observed without surprise
that the expectation—maximization with BP gives better results than with MF in the
region of parameters where BP is superior for the E-step. Otherwise the performance
was comparable. Notably, both the approaches suffer from a strong dependence on
the initial conditions of the parameters p!ZY. This is a known problem in general
expectation—maximization algorithms [10]. The problem comes from the fact that the
log-likelihood £(#) has many local maxima (each corresponding to a fixed point) in 6 in
which the expectation—maximization update gets stuck. Fortunately the free energy serves
as an indicator of which fixed point of EM is better. Hence a solution is to run the EM
algorithm from many different initial conditions and to consider the fixed point with the
smallest free energy (i.e. largest likelihood). Since the volume of possible parameters does
not grow in the system size NV, this still leads to an algorithm linear in the system size (for
sparse networks). However, the increase in the running time is considerable and smarter
initializations of the parameters p!z° are desired. We introduce one such in section 5.2.
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Figure 3. Comparison of the BP (only the E-step) and spectral clustering based
on the random walker matrix P and the modularity matrix B (see section 4.1).
Datapoints correspond to networks with N = 10° nodes for the two spectral
approaches and N = 10° for BP, and average degree ¢ = (k) = 3. The networks
of ¢ = 2 groups are generated using the modular structure as sketched in the
left part of figure 1. To ensure the random walk based method would work, we
extracted the largest connected component of the network and ran the algorithm
on it. Left: the overlap @ at different values of € = cout/cin. Note how the spectral
approaches can only correctly recover the latent class labels deep in the feasible
region of the parameter space. Right: the overlap @) at different values of the
connectivity ¢ at fixed e = 0.3. Again, the spectral methods can only identify the
latent class labels for problem instances well within the feasible region and fail
on the hard instances near the critical connectivity.

5.2. Spectral methods

Methods based on the eigenvectors of the adjacency matrix of the network provide one of
the most flexible approaches of graph clustering problems applied in practice and hence
we compare the BP algorithm to this approach as well. The comparison of BP with
modularity matrix based and random walker based spectral methods gives the following
conclusions.

e In the case when the parameters # are known and we search for the best estimate of the
original group assignment we observed that BP is always better than the two spectral
clustering algorithms (that is the random walker based and the modularity based one)
that we tested. This is illustrated in figures 3 and 4. In some cases (e.g. figure 4 left) the
improvement BP provides over spectral methods is marginal. In other cases, e.g. for the
core—periphery network of figure 4 right the improvement is drastic. For the simple 2
group structures discussed here, one can avoid the k-means step on the dimensionality
reduced data obtained by the spectral techniques as discussed in section 4.1. Instead,
one can use the entries of the dominant eigenvector v corresponding to the dominant
eigenvalue of either the modularity matrix B or the random walker transition matrix
P. The group assignments are then given as ¢ = sign(v; — +>_,0f) + 1.

e A particularly important point we want to make is the following: for the cases tested
in this paper the spectral methods are clearly suboptimal: there are regions where the
BP inference gives large overlap while spectral clustering methods do not do better
than chance. See for instance figure 3 left for 0.1 < e < 0.268. Recently the authors
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Figure 4. Left: an example where the EM with BP when initialized in a random
matrix ¢, does not work, whereas the random walker spectral method works
well. The result of the spectral method serves as a initialization of ¢, in the
EM BP, which then improves the achieved overlap. Modular network of size
N = 10° generated with ¢ = 4 groups and € = 0.35. Right: an example where EM
with BP works well even from random initial condition for the matrix cq, while
spectral methods do not work well at all. The network exhibits a core—periphery
structure (middle panel of figure 1) of size N = 10%. Here the average degree of
core variables is equal to the average degree of peripheral variables. There are two
groups of sizes p, = 2/3 and p, = 1/3, ¢qp matrix is in form of {cin, Cio; Cio, Cout }
with ¢in = 9¢/(8 =€), cout = €cin and ¢;, = 1 —0.5¢. The modularity based method
gives overlap 2/3, because all variables were assigned to group 1.

of [13] claimed ‘no other method will succeed in the regime where the modularity
method fails’, it was mentioned that their results may not be valid for networks with
small average degree. Here we clearly show that for networks with small average degree
the spectral methods are indeed not optimal. In our opinion, the conclusions of [13]
apply only when the average degree diverges with the system size.

e A final point is that the spectral method should thus not be thought as the end of
the story, but rather as the beginning: indeed, they are extremely useful as a starting
point for initializing EM BP to achieve improved overlap. This is shown in figure 4
left, where EM BP starts from parameters taken from the result of the random walker
based spectral method. This clearly improves the quality of the inference without
having to restart EM BP for many initial conditions.

6. Conclusions

Using the example of latent variable inference in the stochastic block model of complex
networks, we have compared belief propagation based inference techniques with traditional
mean field approaches and classic spectral heuristics. To this end, we have used the recent
discovery of a sharp transition in the parameter space of the stochastic block model from
a phase where inference is possible to a phase where inference is provably impossible. In
the vicinity of the phase transition, we find particularly hard problem instances that allow
a performance comparison in a very controlled environment.

We could show that although spectral heuristics are appealing at first for their speed
and uniqueness of the resulting decompositions, they only work reliably deep within the
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parameter region of feasible inference. In particular, very sparse graphs are difficult for
spectral methods, as are block structures that are more complicated than a mere collection
of cohesive subgraphs or communities. In short, they serve as a ‘quick and dirty’” approach.
We also evaluate if recent claims on the optimality of spectral methods for block structure
detection hold for networks with small average degree [13].

Comparing naive mean field techniques with belief propagation techniques, we find
that the computational burden, which has so far hindered the widespread use of belief
propagation in fully connected graphical models such as block structure inference of
(sparse or dense) networks, has been lifted completely. Not only is the computational
complexity of the variable updates the same, belief propagation also exhibits much better
convergence properties and this in particular on the hard problem instances. Hence, we
expect that the presented formulations of belief propagation equations may find a wide
range of application also in other fields of inference with fully connected graphical models.
Note that the regime of p,.; = O(1/N) considered here corresponds to the maximally sparse
case. BP will still outperform other methods when p,; = O(N~%) with a < 1, albeit the
performance differences will be much smaller.

Finally, we could show that using spectral decompositions in order to select initial
conditions for learning the parameters of the stochastic block model can be a viable step
in order to reduce the dependency on initial conditions when used in conjunction with
algorithms of the expectation—maximization type.

Acknowledgments

We wish to thank to Cris Moore for discussions about various aspects of the EM BP
algorithm. This work was supported by the Projet DIM ‘problématique transversales
aux systemes complexes’ of the Institut des Systemes Complexes, Paris Ile-de-France
(ISC-PIF). JR was supported by a Fellowship Computational Sciences of the Volkswagen
Foundation.

References

[1] Daudin J J, Picard F and Robin S, A mizture model for random graphs, 2008 Stat. Comput. 18 173
[2] Decelle A, Krzakala F, Moore C and Zdeborova L, Asymptotic analysis of the stochastic block model for
modular networks and its algorithmic applications, 2011 Phys. Rev. E 84 066106
[3] Decelle A, Krzakala F, Moore C and Zdeborové L, Inference and phase transitions in the detection of
modules in sparse networks, 2011 Phys. Rev. Lett. 107 065701
[4] Dempster A P, Laird N M and Rubin D B, Mazimum likelihood from incomplete data via the EM
algorithm, 1977 J. R. Stat. Soc. B 39 1
[5] Easley D and Kleinberg J, 2010 Networks, Crowds and Markets: Reasoning About a Highly Connected
World (Cambridge: Cambridge University Press)
[6] Goldenberg A, Zheng A X, Fienberg S E and Airoldi E M, A survey of statistical network models, 2009
Found. Trends Mach. Learn. 2 1
[7] Hastings M B, Community detection as an inference problem, 2006 Phys. Rev. E 74 035102
[8] Hofman J M and Wiggins C H, Bayesian approach to network modularity, 2008 Phys. Rev. Lett.
100 258701
[9] Holland P W, Laskey K B and Leinhard S, Stochastic Block-models: first steps, 1983 Soc. Netw. 5 109
[10] Karlis D and Xekalaki E, Choosing initial values for the EM algorithm for finite miztures, 2003 Comput.
Stat. Data Anal. 41 577
[11] Lafon S and Lee A B, Diffusion maps and coarse-graining: a unified framework for dimensionality reduction,
graph partitioning, and data set parameterization, 2006 IEEE Trans. Pattern Anal. Mach. Intell. 28 1393

doi:10.1088/1742-5468/2012/12/P12021 15


http://dx.doi.org/10.1007/s11222-007-9046-7
http://dx.doi.org/10.1007/s11222-007-9046-7
http://dx.doi.org/10.1103/PhysRevE.84.066106
http://dx.doi.org/10.1103/PhysRevE.84.066106
http://dx.doi.org/10.1103/PhysRevLett.107.065701
http://dx.doi.org/10.1103/PhysRevLett.107.065701
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1103/PhysRevE.74.035102
http://dx.doi.org/10.1103/PhysRevE.74.035102
http://dx.doi.org/10.1103/PhysRevLett.100.258701
http://dx.doi.org/10.1103/PhysRevLett.100.258701
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://dx.doi.org/10.1016/S0167-9473(02)00177-9
http://dx.doi.org/10.1016/S0167-9473(02)00177-9
http://dx.doi.org/10.1109/TPAMI.2006.184
http://dx.doi.org/10.1109/TPAMI.2006.184
http://dx.doi.org/10.1088/1742-5468/2012/12/P12021

Comparative study for inference of hidden classes in stochastic block models

[12] Mossel E, Neeman J and Sly A, Stochastic block models and reconstruction, 2012 arXiv:1202.1499v3

[13] Nadakuditi R R and Newman M E J, Graph spectra and the detectability of community structure in
networks, 2012 Phys. Rev. Lett. 108 188701

[14] Neal R and Hinton G E, A view of the EM algorithm that justifies incremental, sparse, and other variants,
1998 Learning in Graphical Models (Dordrecht: Kluwer Academic) p 355

[15] Newman M E J, Finding community structure in networks using the eigenvectors of matrices, 2006 Phys.
Rev. E 74 036104

[16] Newman M E J and Girvan M, Finding and evaluating community structure in networks, 2004 Phys. Rev.
E 69 026113

[17] Newman M E J, 2010 Complex Networks: An Introduction (Oxford: Oxford University Press)

[18] Omnsjo6 M and Watanabe W, 2006 A Simple Message Passing Algorithm for Graph Partitioning Problems
(Berlin: Springer) pp 507-516, number 4228 in LNCS

[19] Pinkert S, Schultz J and Reichardt J, Protein-interaction networks-more than mere modules, 2010 PLoS
Comput. Biol. 6 €1000659

[20] Reichardt J and Leone M, (Un)detectable cluster structure in sparse networks, 2008 Phys. Rev. Lett.
101 078701

[21] Reichardt J, Alamino R and Saad D, The interplay between microscopic and mesoscopic structures in
complex networks, 2011 PLoS One 6 ¢21282

[22] Sen P and Getoor L, Link-based classification’, Technical report, 2007 University of Maryland Technical
Reports CS-TR-4858

[23] Uetz P et al, A comprehensive analysis of protein—protein interactions in saccharomyces cerevisiae, 2000
Nature 403 623

[24] Weiss Y, 2001 Advanced Mean Field Methods: Theory and Practice (Cambridge, MA: MIT Press) chapter
15, p 229

[25] Wellman B, Computer Networks as Social Networks, 2001 Science 293 2031

[26] Yedidia J S, Freeman W T and Weiss Y, Understanding belief propagation and its generalizations, 2001
IJCALI: Int. Joint Conf. on Artificial Intelligence

doi:10.1088/1742-5468/2012/12/P12021 16


http://arxiv.org/abs/1202.1499v3
http://arxiv.org/abs/1202.1499v3
http://arxiv.org/abs/1202.1499v3
http://arxiv.org/abs/1202.1499v3
http://arxiv.org/abs/1202.1499v3
http://arxiv.org/abs/1202.1499v3
http://arxiv.org/abs/1202.1499v3
http://arxiv.org/abs/1202.1499v3
http://arxiv.org/abs/1202.1499v3
http://arxiv.org/abs/1202.1499v3
http://arxiv.org/abs/1202.1499v3
http://dx.doi.org/10.1103/PhysRevLett.108.188701
http://dx.doi.org/10.1103/PhysRevLett.108.188701
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1371/journal.pcbi.1000659
http://dx.doi.org/10.1371/journal.pcbi.1000659
http://dx.doi.org/10.1103/PhysRevLett.101.078701
http://dx.doi.org/10.1103/PhysRevLett.101.078701
http://dx.doi.org/10.1371/journal.pone.0021282
http://dx.doi.org/10.1371/journal.pone.0021282
http://dx.doi.org/10.1038/35001009
http://dx.doi.org/10.1038/35001009
http://dx.doi.org/10.1126/science.1065547
http://dx.doi.org/10.1126/science.1065547
http://dx.doi.org/10.1088/1742-5468/2012/12/P12021

	Comparative study for inference of hidden classes in stochastic block models
	Contents
	Introduction
	The stochastic block model
	General considerations
	Inferring stochastic block models
	Spectral approaches
	Expectation--maximization
	E-step and M-steps using the naïve mean field
	E-step and M-steps using belief propagation

	Performance comparison
	Belief propagation versus mean field
	Spectral methods

	Conclusions
	Acknowledgments
	References


