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Outline

Boltzmann entropy SB , defined in µ-space, obeys H-theorem, in
accord with 2nd Law of Thermodynamics.
Gibbs entropy SG , defined in Γ-space, say M, does not grow for
hamiltonian evolution, but coarse grained version Scg , obtained
partitioning in fixed (time-independent) cells Γ-space, does.

• What distinguishes SB and SG , µ- and Γ-space descriptions?

• Interactions and chaos play different roles;

• Model: symplectic maps relaxing to equilibrium;

• Regime: initial nonequilibrium stage (final stage is trivial);

• Characteristic graining scale in µ-space, due to interaction
strength, absent in Γ−space;

• Initial growth of coarse grained entropies due to chaos.
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Each microstate X ∈M represents an N-particle system (N ≥ 1).

Geometric point X does not interact with any other Y ∈M:
system in microstate X not affected by system in microstate Y:
no coupling between equations of motion of particles with initial
condition X and particles with initial condition Y, even for X very
close to Y.

Macrostate of system of microstate X determined by values of
phase functions of interest O(X),P(X), ..., with some tolerance,
δO, δP , ... negligible with respect to macroscopic measurements:
e.g. number density ni/N of particles in subregion Ci , i = 1, ..., L,
of spatial volume V of system.

Particles tipically interact: equations of motion of j-th particle
coupled to those of nearby l-th particle; interactions determine
particles’ “size”: particles are not geometric points.
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If O takes values in (O − δO,O + δO) one identifies subset (shell)
of M correspondig to that macrostate:

UO,δOO = {Γ ∈M : O(Γ) ∈ (O − δO,O + δO)} ⊂ M

Set of shells yields (non-local) partition of M; thickness of shells
corresponds to resolution of microstates due to accuracy δO of
measurement.

If more quantities are measured, partition of M given by
intersection of corresponding shells.

Shells and their intersection not localized around phase points: e.g.
for O = number density, P = internal energy, points in opposite
regions of velocity space belong to same partition element.

6N-dimensional hypercube of small side around point X does not
identify macrostate, far away points are missing.
Physically relevant only if one observes microscopic variables.
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Phase space entropies and ensembles

At time t, M may be endowed with probability density ρt .
If dynamics preserve probabilities, ρt obeys Liouville Equation.
For Hamiltonian dynamics, Gibbs entropy is constant of motion:

SG = −k
B

∫
ρt(X) ln ρt(X)dX

Attributing relative weights to points of M representing
independent systems, per se, ρt , differs from any quantity of
thermodynamic interest: these express properties of a single
system. But the average of its log over equilbrium ensembles
equals thermodynamic S .

Because equilibrium does not evolve, microstates have time to
explore M with given frequencies: ρ could be dynamically justified.
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Clearly a very special situation for very special ρ. No surprise that
in e.g. evolving states, SG does not conform to S . Why should it?
For instance, no time to justify statistics and ρt not even a sum
observable as required by Khinchin.

Introduce fixed grid on M made of cells Ci of volume Vi centered
in points Xi , and integrate ρt to obtain cell probabilities pt,cg (i).
The coarse grained entropy,

SG ,cg (t) = −k
B

∑
i

pt,cg (i) ln pt,cg (i)

evolves even for Hamiltonian dynamics.
As Vi → 0, SG ,cg → SG , apart from constant related to size of Vi .
Not only arbitrary 0 of entropy, but also arbitrary relaxation times:
fine, changing Vi changes observable; single particle never relaxes.
Different from evolution of observables, in µ-space, which implies
time dependent partitions:

UO,δOO (t) = {Γ ∈M : O(Γ) ∈ (Ot − δO,Ot + δO)}
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Jaynes: “since the variation of Scg is due only to the artificial
coarse-graining operation and it cannot therefore have any physical
significance...”

Mackey: “Experimentally, if entropy increases to a maximum only
because we have reversible mixing dynamics and coarse graining
due to measurement imprecision, then the rate of convergence of
the entropy (and all other thermodynamic variables) to equilibrium
should become slower as measurement techniques improve. Such
phenomena have not been observed.”
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Chaotic systems with ρ0 supported on small region of linear size σ
larger than linear size of phase space cells ∆:

SG ,cg (t)− SG ,cg (0) '
{

0 t < tλ
hKS(t − tλ) tλ < t < te

hKS = Kolmogorov-Sinai entropy

tλ ∼
1

λ1
ln
( σ

∆

)
,

λ1 = largest Lyapunov exponent.

SG ,cg behaves like SG until phase space structures reach scale ∆ in
contracting directions, because up to that stage, resolution suffices.

Scenario limited to not too long times (before saturation);
not always true (e.g. intermittency must be negligible).
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Boltzmann entropy: SB = k
B

log ∆Γ

µ = V × IR3 = 1-particle space.
Single, N � 1, interacting, dilute particle system.

Fix volumes vi ⊂ µ, size ∆, with ni � 1 particles (N ≫ ∆−2d).

f∆(i ; t) = ni/N = 1-particle density for given macrostate;
itself a macroscopic observable.

It is not merely a probability density, it is a density of matter:
particles in 3 dimensions are very different from points of the
abstract 6N-dimensional phase space.
It evolves according to Boltzmann not Liouville Equation;
Boltzmann Eq. requires molecular chaos, Liouville Eq. does not.
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A macrostate U
f∆(t)
f =

{
X ∈M : density given by {f∆(i ; t)}Mcells

i=1

}
occupies a volume ∆Γ(t) in M, and all U

f∆(t)
f partition M, but

not a naive partition of M.

Neglecting ∆ and N dependent corrections, one has:

SB(t) = k
B

log ∆Γ(t) ≈ −Nk
B

∑
i

f∆(i ; t)) log f∆(i ; t) = SB,∆(t)

Then, for N →∞, ∆→ 0, with ∆� (1/N)1/2d and constant
total cross section, one has:

SB(t) = −Nk
B

∫
f (q,p, t) ln f (q,p, t)dqdp

Boltzmann’s H-theorem

dSB

dt
≥ 0.
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• If particles don’t interact, ρt = ⊗ρ(i)
t , where factors ρ

(i)
t

represent phase space densities of 1-particle systems.
Only in this case, do they also represent 1-particle projections
of an N particle system, i.e. f , which now obeys “Liouville

thm” as the ρ
(i)
t do. Γ and µ descriptions and corresponding

entropies turn equivalent: SB does not evolve!
Indeed: projection of non-interacting hamiltonian system is
hamiltonian.

• In general, however, SG concerns large ensembles of whatever
(large or small, dense or rarefied, etc.) independent systems,
while SB concerns large single systems in rarefied conditions,
and there is no equivalence.

Can we see this difference in practice?
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A discrete time model

N coupled 2-D symplectic volume preserving maps
(one “coordinate” and one “momentum”)

X = (Q,P), Q = (q1 . . . qn), P = (p1 . . . pn), qi , pi ∈ [0, 1].

Each “particle” interacts with M mates; interaction strength ε.

NS = fixed “obstacles” positioned in Yj , “scatter” with strength k .

q′i = qi + pi mod 1

p′i = pi + k
NS∑
j=0

sin[2π (q′i − Yj)] + ε

M
2∑

n=−M
2

sin[2π
(
q′i − q′i+n

)
] mod 1

Without interactions (ε = 0): chaotic single-particle dynamics.
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Numerical results

Compute f∆(q, p, t) for given ε and ∆, and vary ε and ∆. The
“Boltzmann entropy”

η(t,∆) = −
∑
j ,k

f∆(q(j), p(k), t) log f∆(q(j), p(k), t)

is valid if the “potential energy” is a small part of the total, and f∆

is a good approximation of f (q, p, t) if ni � 1/∆2.

δS(t,∆) = η(t,∆)− η(0,∆)
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Points normally distributed, σ = 0.01, centred at
(q, p) = (1/4, 1/2). Obstacles positioned at random.

NS = 103

N = 107

k = 0.017

Then, λ1 of single particle dynamics is not too large, but there are
no KAM tori as barriers for transport. Trajectory generated by 104

iterations in µ-space, with ε = 0.
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Non-interacting case

Begin with ε = 0.
Slope of straight

line equals λ1

Growth only due to
discretization:

dynamics concerning
f (q, p, t) obeys

“Liouville theorem”
i.e. Boltzmann Eq.

with no collision
integral

η constant of motion
for ∆→ 0
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Extrapolate: ∆→ 0: small times and for ∆ not too large

δS(t,∆) ∝ ∆2 (No fine-grained evlution!)

Relevant parameter is cell area. For t > tλ,

δS(t,∆) = a log(∆) + b.

SB behaves like SG for ε = 0.
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Coarse-graining allows η to grow. However, that does not happen
if SB computed with N →∞, ∆→ 0, ∆� lc , and lc ∼ N−1/2:
bad statistics are required.

t = 3 (small) t = 9 (large)

Curves tending to 0 collapse for large N at fixed t,∆: if cells
occupied by many particles, SB does not evolve in time.
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Interacting case

Consider ε = 10−4.
After a characteristic time depending on ε, t∗(ε, λ1), δS has log
dependence on ∆ and extrapolates to finite value for ∆→ 0.

Objective value for
the entropy!

straight line slope
equals λ1
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For small fixed times (left):

δS(t,∆) ≈ c0(t) + c1(t)∆2. (Fine-grained evolution)

Large t (right), δS(t,∆) also shows weak dependence on ∆ for
∆→ 0.
Characteristic size ∆∗(ε, λ1):
below ∆∗, entropy does not depend on graining (if ni � 1).
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Extrapolation for ε→ 0 of the curves δS(t,∆) as a function of t.
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Mimic interactions with noise

pi (t+1) = pi (t)+k
∑
j

sin [2π(qi (t + 1)− Yj)]+
√

2Dξi (t) mod1

〈ξi (t)〉 = 0, 〈ξi (t)ξj(t ′)〉 = δt,t′δi ,j , D =
Mε2

4

δS(t,∆) practically constant with M and ε, if Mε2 constant.

Let tc be time for scale of noise induced diffusion to equal scale
generated by chaotic dynamics: it should coincide with t∗(ε, λ).

As scales of noise and chaos go as
√

Mε2t/2 and σ exp(−λt),

ε
√

Mtc/2 = σ exp(−λtc) .

Numerically confirmed.
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Snapshots of
evolution of

single-particle
distribution with

∆ > ∆∗.

Non-interacting
case (left)
interacting

case (right)
with ε = 10−4

M = 100.
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Concluding remarks

a) ε = 0: µ ∼ Γ, SB ∼ SG . δS and tλ depend on ∆.

b) small ε: characteristic scales ∆∗ and t∗ at which diffusion
smoothes fractal structures (intrinsic properties). Smaller ε
implies smaller ∆∗ and larger t∗.
Below ∆∗, well defined time evolution: δS independent of ∆.

c) small ε: time evolution of f (q, p, t) differs from ε = 0 case
only on tiny scales. Coupling necessary for “genuine” growth
of S , but has no dramatic effect on f (q, p, t) for ∆ & ∆∗.

d) chaos relevant in ε→ 0 limit: slope of δS(t,∆) given by λ1

for intermediate t; ∆∗ and t∗ depend on both ε and λ1.

e) SG and its coarse grained versions not thermodynamic in
general, but maybe useful e.g. for small systems: microscopic
observations.
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