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1. Introduction

Graph expansion methods for statistical models have been extensively discussed in the

literature. They have been very helpful in studying the high-temperature behaviours

and the phase transition properties of discrete models such as the Ising model of

ferromagnetism. Some of the early efforts were carried out by Brout and others [1, 2, 3].

More recently, Georges and Yedidia [4] found that, high-temperature expansion of the

Ising spin glass free energy can also be carried out under the constraints of fixed mean

spin values. This later work was extended by Sessak and Monasson [5] to include pair

correlations of spin variables as another set of expansion constraints. The constrained

graph expansion method was applied to the inverse Ising problem [5], with the aim of

inferring the microscopic interactions of a Ising system based on the observed mean spin

values and spin-pair correlations.

For finite-connectivity binary statistical models, Chertkov and Chernyak [6, 7]

showed that the partition function can be expressed as a sum of contributions from

subgraphs. The first term of this expansion is identical to the partition function

obtained using the Bethe-Peierls (BP) approximation. Loop corrections to the BP

approximation was also calculated by Montanari, Rizzo, and collaborators [8, 9] and by

Parisi and Slanina [10]. The derivation of the partition function expansion by Chertkov

and Chernyak relied on a special property of Ising spin variables (see equation (17)

of [7]). This special property is not valid for more general statistical models, whose

microscopic variables are not necessarily binary or discrete. Whether the conclusion

of [6, 7] is valid to general statistical models is still an open issue (for models whose

discrete variables take Q > 2 values, a complicated loop-tower expansion was presented

in [11]).

In the present contribution we first extend the results of [6, 7, 11] by carrying out

a very simple derivation of partition function loop series for a general statistical model

defined on a graph. We do not make any assumptions on the nature of the microscopic

state variable of each edge (or vertex) of the graph. This state variable can be discrete

or real-valued, or be a vector, or even be a function itself. We show that the first

term of this expansion is also identical to the Bethe-Peierls (BP) partition function, and

corrections to the BP partition function come only from looped subgraphs without any

dangling edges. The auxiliary probability distributions of this loop series expansion are

chosen to be a fixed point of the belief-propagation equation. This particular choice

makes all the subgraphs with at least one dangling edge to have zero contribution to

the correction terms.

As the second main result, we present the loop series expressions for the grand

partition function and higher-level partition functions. The belief-propagation equation

of a statistical model may have multiple fixed points, each of which is referred to as a

macroscopic state of the configuration space. If this happens, we define a grand partition

function at the level of macroscopic states and perform a loop series expansion for this

grand partition function. When the auxiliary probability distributions of this expansion
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are chosen to be a fixed point of the survey-propagation equation (first derived through

the first-step replica-symmetry-breaking (1RSB) mean-field theory of spin glasses [12]),

the first term of this loop expansion gives the BP free energy functional at the level

of macroscopic states. Corrections again come only from subgraphs that are free of

dangling edges. In case the survey-propagation equation has multiple fixed points,

the same loop series expansion can be performed for higher-level partition functions.

As a result, we obtain the higher-level BP free energy functionals and the correction

contributions, and the associated message-passing equations.

This work is a mathematical approach to the theory of spin glasses from the

framework of partition function loop expansion. It is clear that at each replica-

symmetry-breaking (RSB) level of the mean-field theory [12] the corrections to the

free energy due to looped nontrivial subgraphs are neglected. This neglected correction

contribution is explicitly expressed as a logarithm over a finite series in this paper.

At a given level of macroscopic states we anticipate that, the magnitude of the total

loop correction contribution to the free energy will be sub-linear in N (N being the

total number of vertices) if there is only one fixed-point for the corresponding message-

passing equation, but it will be linear in N if there exist multiple fixed-points. This

statement needs to be checked by numerical calculations on single graphical systems.

Section 2 introduces the general statistical model. We work out the loop series of

the partition function in Sec. 3 and derive the belief-propagation equation. In Sec. 4

we extend the discuss to the case that the belief-propagation equation has multiple

fixed points, and perform a loop series expansion for the grand partition function. The

1RSB survey-propagation equation is derived here. We conclude this work in Sec. 5, and

discuss some possible extensions. The Appendix A contains graph expansion results for

a one-dimensional ring.

2. General statistical models on graphs

We consider a graph G composed of N vertices (i = 1, 2, . . . , N) and M edges. An

edge (i, j) between two vertices i and j has a state variable xij. This variable may be a

binary spin for some systems, xij = ±1. For other systems, xij may be real-valued or

be a vector, or be even more complicated. In this paper we make no assumptions on

the nature of the microscopic state variable xij of each edge (i, j). Each vertex i has

an energy Ei(xi∂i), where xi∂i ≡ {xij1 , xij2 , . . . , xijk} with j1, j2, . . . , jk being the k other

vertices with which i forms an edge. The number k of nearest neighbors of a vertex

might be different for different vertices. The vertex energy is a function of the state

variables of its connected edges. Notice that xij and xji both denote the state of edge

(i, j), therefore xij ≡ xji. The total vertex energy for an edge configuration {xij} is

E({xij}) =
N∑
i=1

Ei(xi∂i). (1)
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The partition function of the system is defined as

Z(β) =
∏
(i,j)

[∫
dxijρ0(xij)

] N∏
i=1

e−βEi(xi∂i). (2)

In the above equation, β is the inverse temperature, ρ0(xij) is the probability of

microscopic state xij for an isolated edge (i, j), and
∏

(i,j) means the product over all

the edges of graph G. For simplicity we assume that the a priori probabilities ρ0(xij)

are identical for all edges. This assumption is of cause nonessential.

The partition function (2) also applies to graphical models whose microscopic states

are defined on vertices rather than on edges [6, 7]. For example, consider a graph G

with the property that its vertices can be divided into two subsets, denoted by {i} (the

variable nodes) and {a} (the check nodes), such that all the edges of G are between a

variable node i and a check node a. For each variable node i we assume that

e−βEi(xi∂i) =
∫

dxiρ0(xi)
∏
a∈∂i

[δ(xia − xi)
ρ0(xia)

]
, (3)

where ∂i denotes the set of nearest neighboring check nodes of i. Equation (2) then

simplifies to

Z(β) =
∏
i

[∫
dxiρ0(xi)

]∏
a

e−βEa(x∂a), (4)

where ∂a denotes the set of nearest neighboring variable nodes of a. Equation (4) is

the partition function of a system defined on a factor graph, with each variable node i

having a microscopic state xi and each check node a having an energy Ea. The check

energy Ea depends on the microscopic state x∂a of the variable nodes in ∂a.

In some graphical models, the state xij of each edge (i, j) is a collection of two

microscopic states yiij and yjij, xij ≡ {yiij, y
j
ij}. We assume that the a priori probability

distribution of the edge state xij equals to ρ0(yiij)ρ0(yjij), and that the energy Ei of a

vertex i can be expressed as

e−βEi(xi∂i) =
∫

dyiρ0(yi)e
−βẼi(yi,{yjij})

∏
j∈∂i

[δ(yi − yiij)
ρ0(yjij)

]
. (5)

Under these assumptions, the partition function (2) becomes

Z(β) =
∏
i

[∫
dyiρ0(yi)e

−βẼi(yi,y∂i)
]
, (6)

which describes a graphical model whose vertex energy Ẽi depends on the microscopic

state yi of vertex i and the microscopic states y∂i of its nearest neighbors. An example

of such statistical models is the palette-coloring problem [13, 14, 15].

3. Graph expansion for the general statistical model

To find a loop series expression for the partition function (2), we introduce for each edge

(i, j) two auxiliary probability distributions qj→i(xij) and qi→j(xji), and rewrite Z(β) as

Z(β) =
N∏
i=1

∏
j∈∂i

[∫
dxijqj→i(xij)

]
e−βEi(xi∂i)

∏
(k,l)

δ(xkl − xlk)ρ0(xkl)

qk→l(xlk)ql→k(xkl)
(7)
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=
1∏

(i,j)
C(i,j)

N∏
i=1

∏
j∈∂i

[∫
dxijqj→i(xij)

]
e−βEi(xi∂i)

∏
(k,l)

[
1 + ∆(k,l)(xkl, xlk)

]
. (8)

In (8), C(i,j) is an edge constant with the value

C(i,j) =
∫

dxij
qi→j(xij)qj→i(xij)

ρ0(xij)
, (9)

and ∆(i,j)(xij, xji) is expressed as

∆(i,j)(xij, xji) ≡
δ(xij − xji)ρ0(xij)C(i,j)

qi→j(xji)qj→i(xij)
− 1. (10)

From (8) we know that the partition function can be expressed as the sum of

contributions from all the possible non-empty subgraphs of G:

Z(β) = ZBP
(
1 +

∑
g⊆G

Lg
)
. (11)

In the above equation, ZBP is calculated by

ZBP =

∏N
i=1

∏
j∈∂i

[∫
dxijqj→i(xij)

]
e−βEi(xi∂i)∏

(i,j)

[∫
dxij

qi→j(xij)qj→i(xij)

ρ0(xij)

] . (12)

A non-empty subgraph g of graph G contains a partial set of the edges of G and all the

vertices that are attached to these edges. The correction Lg is expressed as

Lg =
∏
i∈g

∏
j∈∂i

[∫
dxijqj→i(xij)

]
e−βEi(xi∂i)∏

j∈∂i

[∫
dyijqj→i(yij)

]
e−βEi(yi∂i)

∏
(k,l)∈g

∆(k,l)(xkl, xlk). (13)

Consider a subgraph g which has a vertex i that is linked to the other parts of g

only through a single edge (i, j). The neighborhood of such a leaf vertex i is shown

schematically in figure 1. We find that after integrating over the variable xij, the

correction Lg is expressed as

Lg =
∏
k∈g\i

∏
l∈∂k

[∫
dxklql→k(xkl)

]
e−βEk(xk∂k)∏

l∈∂k

[∫
dyklql→k(ykl)

]
e−βEk(yk∂k)

∏
(m,n)∈g\(i,j)

∆(m,n)(xmn, xnm)

×
{
q̂i→j(xji)

∫
dyijqj→i(yij)qi→j(yij)/ρ0(yij)

qi→j(xji)
∫

dyijqj→i(yij)q̂i→j(yij)/ρ0(yij)
− 1

}
, (14)

where q̂i→j(xij) is determined by the set of probability functions q∂i\j ≡ {qk→i, k ∈ ∂i\j}
through

q̂i→j(xij) = Bi→j(q∂i\j) ≡
ρ0(xij)

∏
k∈∂i\j

[∫
dxikqk→i(xik)

]
e−βEi(xi∂i)∫

dyijρ0(yij)
∏
k∈∂i\j

[∫
dyikqk→i(yik)

]
e−βEi(yi∂i)

. (15)

The function Bi→j(q∂i\j) as defined by (15) is called the belief-propagation equation. It

takes as input a set of probability distributions qk→i(xik) (k ∈ ∂i) and outputs a new

probability distribution q̂i→j(xij).

Since we are free to choose the auxiliary probabilities functions {qi→j(xji)}, we

can choose this set of auxiliary functions to be a fixed point of the belief-propagation
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Figure 1. The neighborhood of a vertex i. A solid line between any two vertices i

and j means that the edge (i, j) is presented both in graph G and in subgraph g. A

dashed line between two vertices i and k means that the edge (i, k) is presented in G

but not in g. A solid circle denotes a vertex that belongs to subgraph g, and a dashed

circle denotes a vertex that is not belonging to g. A solid circle is attached by at least

one solid edge. In this figure, vertex i is connected by only one solid edge, it is a leaf

vertex of subgraph g, and the edge (i, j) is a dangling edge.

equation (15). In other words, we require that the auxiliary probability functions to

satisfy

qi→j(xij) = Bi→j
(
{qk→i(xik), k ∈ ∂i\j}

)
. (16)

Then for each edge (i, j) we have q̂i→j(xij) = qi→j(xij), and the expression inside

the curly brackets of (14) is identically zero. Under this special choice, only those

subgraphs of graph G with each vertex i having at least two attached edges have non-

zero contributions to the correction of the partition function. The total free energy F (β)

is then expressed as

F (β) ≡ − 1

β
lnZ(β) = FBP (β)− 1

β
ln
[
1 +

∑
g′⊆G

Lg′
]
, (17)

where g′ denotes a looped subgraph that contains no dangling edges. The free energy

FBP (β) corresponds to the partition function ZBP and is expressed as

FBP (β) =
∑
i

fi −
∑
(i,j)

f(i,j), (18)

with

fi = − 1

β
ln

∏
k∈∂i

[∫
dxikqk→i(xik)

]
e−βEi(xi∂i)

 , (19)

f(i,j) = − 1

β
ln

[∫
dxij

qi→j(xij)qj→i(xij)

ρ0(xij)

]
. (20)

We emphasize that FBP (β) is identical in form to the mean-field free energy as

obtained by the replica-symmetric (RS) spin-glass theory [12]. The expression (18) was

first derived in the mean-field theory by using the BP approximation. The free energy

FBP can also be viewed as a functional of the 2M probability distributions {pi→j(xij)}
on the M edges (i, j) of graph G. In this paper we refer FBP as the BP free energy
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functional. It is easy to check that the variation of FBP with respect to any a probability

distribution pi→j(xij) is zero at a fixed point of (16). Equation (18) is expressed as the

difference between the total vertex contribution (
∑
i fi) and the total edge contribution

(
∑

(i,j) f(i,j)). An intuitive understanding of this is as follows: Each edge participates in

two vertex interactions and its effect is counted twice when calculating the total vertex

contribution; this over-counting should be subtracted from the total vertex contribution.

From the viewpoint of partition function loop expansion, the belief-propagation

fixed-point condition (16) is a requirement for ensuring all the corrections Lg from

subgraphs g with dangling edges are identically zero. For a loopy subgraph g without

dangling edges, its correction contribution Lg is obtained through (13). The correction

to the total free energy is expressed as the logarithm of the sum of all these loop

correction contributions [see (17)]. In Appendix A we report the free energy correction

contribution of a one-dimensional ring of N edges. The correction is found to be positive

when this ring is energetically frustrated. For more complicated model systems, the sign

of the free energy correction contribution is still an open issue.

For a discrete model whose edge states can take Q > 2 different values, Chernyak

and Chertkov [11] derived a loop-tower expansion for the partition function by exploiting

the gauge symmetry of the microscopic states. The derived belief-propagation equation

by their approach does not fix the gauge freedom completely, and therefore high-order

gauge fixing was introduced, making the loop-tower expansion scheme very complicated.

Gauge fixing is not needed in the present loop series expansion scheme. In light

of the present work, it might be possible to simplify the scheme of [11] and get an

alternative derivation of the free energy expression (17). We are currently working on

this mathematical issue.

4. Graph expansion for the grand partition function

For the general statistical model defined by the partition function (2), the belief-

propagation equation (16) may have multiple fixed points. If this happens, then the

BP free energy FBP as a functional of {pi→j(xij)} has more than one minimal value. In

the following, we will refer to a fixed-point solution {pi→j(xij)} of (16) with a minimal

value of FBP as a macroscopic state of the configuration space. Each macroscopic state

has a corresponding BP free energy value FBP . To account for the existence of multiple

macroscopic states, in analogy with (2), we define a grand partition function Ξ as

Ξ =
∏
(i,j)

[∫ ∫
Dqi→jDqj→iδ

(
qi→j −Bi→j(q∂i\j)

)
δ
(
qj→i −Bj→i(q∂j\i)

)]
exp(−yFBP ). (21)

In the above equation,
∫

Dqi→j means summing over all different possibilities of the

distribution qi→j, and the Dirac delta functions δ
(
qi→j − Bi→j(q∂i\j)

)
ensure that only

fixed-point solutions of the belief-propagation equation (16) contribute to Ξ. The

parameter y is an introduced inverse temperature at the level of macroscopic states.
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In analogy with (7) we can rewrite (21) as

Ξ =
1∏

(i,j) C
(1)
(i,j)

N∏
i=1

[∏
j∈∂i

∫
Dqj→iPj→i(qj→i)e

−yfi
] ∏

(k,l)

[
1 + ∆

(1)
(k,l)

]
. (22)

In the above equation, Pi→j(qi→j) is an introduced auxiliary probability distribution

function for the probability distribution qi→j(xji); fi is the free energy contribution of

vertex i as expressed by (19); C
(1)
(i,j) is an edge constant,

C
(1)
(i,j) =

∫ ∫
Dqi→jDqj→iPi→j(qi→j)Pj→i(qj→i)e

−yf(i,j) , (23)

with f(i,j) being the free energy contribution of an edge (i, j) as given by (20); and ∆
(1)
(i,j)

is expressed as

∆
(1)
(i,j) ≡

δ
(
qi→j −B(q∂i\j)

)
δ
(
qj→i −B(q∂j\i)

)
C

(1)
(i,j)

Pi→j(qi→j)Pj→i(qj→i)e
−yf(i,j)

− 1. (24)

The grand partition function can therefore be expanded as

Ξ = ΞSP

(
1 +

∑
g⊆G

L(1)
g

)
, (25)

where ΞSP is expressed as

ΞSP =

∏N
i=1

[∏
j∈∂i

∫
Dqj→iPj→i(qj→i)e

−yfi
]

∏
(i,j)

[∫ ∫
Dqi→jDqj→iPi→j(qi→j)Pj→i(qj→i)e

−yf(i,j)
] , (26)

and the correction term L(1)
g of a subgraph g is expressed as

L(1)
g =

∏
i∈g

∏
j∈∂i

[∫
Dqj→iPj→i(qj→i)

]
e−βfi({qj→i})∏

j∈∂i

[∫
Dpj→iPj→i(pj→i)

]
e−βfi({pj→i})

∏
(k,l)∈g

∆
(1)
(k,l). (27)

Consider a subgraph g which has a leaf vertex i and a dangling edge (i, j). After

integrating over the probabilities around vertex i, the correction contribution of this

subgraph can be expressed as

L(1)
g =

∏
k∈g\i

∏
l∈∂k

[∫
Dql→kPl→k(ql→k)

]
e−βfk({ql→k})∏

l∈∂k

[∫
Dpl→kPl→k(pl→k)

]
e−βfk({pl→k)}

∏
(m,n)∈g\(i,j)

∆
(1)
(m,n)

×
{
P̂i→j(qi→j)

∫ ∫
Dqi→jDqj→iPi→j(qi→j)Pj→i(qj→i)e

−yf(i,j)

Pi→j(qi→j)
∫ ∫

Dqi→jDqj→iP̂i→j(qi→j)Pj→i(qj→i)e
−yf(i,j)

− 1

}
, (28)

where the probability distribution P̂i→j(qi→j) is calculated by

P̂i→j(qi→j) =

∏
k∈∂i\j

[∫
Dqk→iPk→i(qk→i)

]
e−yfi→jδ

(
qi→j −Bi→j(q∂i\j)

)
∏
k∈∂i\j

[∫
Dqk→iPk→i(qk→i)

]
e−yfi→j

, (29)

with

fi→j = − 1

β
ln
[∫

dxijρ0(xij)
∏

k∈∂i\j

∫
dxikqk→i(xik)e

−βEi(xi∂i)
]
. (30)

In accordance with the spin-glass literature, we refer (29) as the the survey-propagation

equation.
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The expression inside the curly brackets of (28) is identically zero if P̂i→j(qi→j) =

Pi→j(qi→j). Since the auxiliary probability distributions {Pi→j(qi→j)} are free to choose,

we can choose them appropriately to ensure that the correction contribution L(1)
g = 0

for any a subgraph g with at least one dangling edge. In other words, {Pi→j(qi→j)}
should be a fixed-point solution of the survey-propagation equation:

Pi→j(qi→j) =

∏
k∈∂i\j

[∫
Dqk→iPk→i(qk→i)

]
e−yfi→jδ

(
qi→j −Bi→j(q∂i\j)

)
∏
k∈∂i\j

[∫
Dqk→iPk→i(qk→i)

]
e−yfi→j

. (31)

This equation was first derived in [12] under physical considerations (the BP

approximation was again used).

At a fixed point of (31), the expression of the total grand free energy is

G(y; β) ≡ −1

y
ln Ξ = GSP (y; β)− 1

y
ln
[
1 +

∑
g′⊆G

L
(1)
g′

]
, (32)

where g′ again denotes a looped subgraph that contains no dangling edges. From the

framework of partition function loop expansion, (31) is a requirement to ensure that

subgraphs with dangling edges do not have correction contributions to the grand free

energy.

In (32), the grand free energy GSP (y; β) is expressed as

GSP (y; β) ≡ −1

y
ln ΞSP =

∑
i

gi −
∑
(i,j)

g(i,j), (33)

with

gi = − 1

y
ln
[∏
j∈∂i

∫
Dqj→iPj→i(qj→i)e

−yfi
]
, (34)

g(i,j) = − 1

y
ln
[∫ ∫

Dqi→jDqj→iPi→j(qi→j)Pj→i(qj→i)e
−yf(i,j)

]
(35)

being, respectively, the contribution to the grand free energy from a vertex i and an

edge (i, j). GSP (y; β) is identical in form to the 1RSB free energy of the mean-field

spin-glass theory [12], which was derived previously by applying the BP approximation.

GSP can also be regarded as a functional of the 2M probabilities {Pi→j(qi→j)}, and

its variation with respect to any a Pi→j(qi→j) is zero at a fixed-point of the survey-

propagation equation. We refer GSP as the survey-propagation free energy functional

(it is the BP free energy functional at the 1RSB mean-field level).

We end this section with a discussion on the reweighting parameter y of (21).

Denoting a fixed-point solution of the belief-propagation equation (a macroscopic state)

as α and its associated BP free energy as F
(α)
BP , the grand partition function Ξ can be

re-written as

Ξ =
∑
α

exp
(
−yF (α)

BP

)
=
∫

df exp
[
N(Σ(f)− yf)

]
, (36)

where exp
(
NΣ(f)

)
is the total number of macroscopic states with a given BP free

energy FBP = Nf (the quantity f is called the free energy density). The function Σ(f)

is called the complexity in the spin-glass literature (it is the entropy density at the level
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of macroscopic states). For N � 1, the integration in (36) are dominated by the value

of f = f which satisfies dΣ(f)
df
|f=f = y. The value f is the mean BP free energy density

at a given value of y. If we neglect the loop correction to the grand free energy in (32),

then

Nf ≈ ∂[yGSP (y; β)]

∂y
=
∑
i

f i −
∑
(i,j)

f (i,j), (37)

where f i and f (i,j) are, respectively, the mean free energy contribution of a vertex i and

an edge (i, j), with the expression

f i =

∏
j∈∂i

∫
Dqj→iPj→i(qj→i)fie

−yfi∏
j∈∂i

∫
Dqj→iPj→i(qj→i)e−yfi

, (38)

f (i,j) =

∫ ∫
Dqi→jDqj→iPi→j(qi→j)Pj→i(qj→i)f(i,j)e

−yf(i,j)∫ ∫
Dqi→jDqj→iPi→j(qi→j)Pj→i(qj→i)e

−yf(i,j)
. (39)

The value of the complexity Σ is expressed as

Σ = y
[
f − 1

N
GSP (y; β)

]
. (40)

The smallest mean free energy density f corresponds to the value of y which makes

the complexity be zero, Σ = 0. Another special value of y is y = β. If the complexity

calculated at y = β is positive, the corresponding mean free energy density value f is

the typical value of BP free energy densities of the macroscopic states sampled at inverse

temperature β [12].

5. Conclusion and discussion

The main results of this paper are the free energy expression (17) and the grand

free energy expression (32), and the corresponding belief-propagation equation (16)

and survey-propagation equation (31). From the viewpoint of partition function loop

expansion, the belief-propagation and survey-propagation equation are, respectively,

conditions needed to ensure that subgraphs with dangling edges have zero correction

contributions to the free energy and the grand free energy.

This work helps to place the mean-field RSB theory of spin glasses on a firmer

mathematical ground. There are many unsolved problems ahead. For example, the

relationship free energy functionals GBP and GSP and the free energy landscape of

the system; the link between the defined grand partition function Ξ and the original

partition function Z; the issue of sampling microscopic configurations {xij} giving a

fixed-point solution {qj→i(xij)} of the belief-propagation equation; and son on.

The discussion in Sec. 4 can be readily extended to the case that the survey-

propagation equation (31) has multiple fixed-point solutions. As a result, the mean-field

second-step RSB free energy and its loop correction expression will be derived, as well as

the corresponding message-passing equation. This expansion hierarchy can be continued

to produce the mean-field results and the corresponding loop correction expressions and

message-passing equations at even higher-levels of replica-symmetry-breaking.
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For statistical models defined on a factor graph with partition functions expressed

in the form of (4), the method of this paper can also be directly applied without the

need of first turning the partition function into the form of (2).

The present paper also points to some other important open issues. One question

is: How to express the mean value of a local observable in terms of a finite loop series?

Examples of local observables are the state variable xij on an edge (i, j) of the system,

the correlation between two edge variables xij and xkl, the energy of a single interaction,

and so on. Loop series expressions for these local observations should be very useful

in improving the predictions of the mean-field cavity theory. For a graphical model

with many short loops, it is desirable to represent the system as a collection of many

basic clusters in the framework of Kikuchi’s cluster variation method (for a review,

see [17]). These basic clusters are connected to each other by joint clusters [18]. The

joint clusters can be regarded as generalized edges. The present partition function loop

expansion method probably is also applicable to these more complex graphical systems.
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Appendix A. Discrete models on a one-dimensional ring

As a simple application of the graph expansion method discussed in the main text, we

calculate the loop correction contribution for a model defined on a one-dimensional ring

with N vertices and N edges. We assume that the edge state xi,i+1 between two vertices

i and (i + 1) can take Q different discrete values, xi,i+1 ∈ {1, 2, . . . , Q}. The energy of

the ring is

E = −JδxN,1
x1,2
−

N−1∑
i=2

Jδxi−1,i
xi,i+1

− JδxN,1
xN−1,N

, (A.1)

where J is a coupling constant and δyx is the Kronecker symbol. The prior distribution

ρ0(xi,i+1) is uniform over the Q states.

For this simple system, the fixed point of the belief-propagation equation (16)

is qi→(i+1)(x) = 1/Q and q(i+1)→i(x) = 1/Q for x ∈ {1, 2, . . . , Q}. Then we have

∆i,i+1(xi,i+1, xi+1,i) = Qδ
xi+1,i
xi,i+1 − 1, and by a straightforward summation along the ring,

the loop correction expression (13) is simplified as

Lg = (Q− 1)
[ eβJ − 1

Q− 1 + eβJ

]N
. (A.2)

We notice that for N being even, Lg ≥ 0 and therefore the loop correction to the free

energy [see (17)] is negative (the Bethe-Peierls free energy FBP is higher than the true
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free energy). However, if N is odd and J < 0, then Lg < 0 and the loop correction to

the free energy becomes positive (FBP is lower than the true free energy). This different

behaviour is related to the fact that, the one-dimensional ring with an odd number of

interactions is frustrated when J < 0. This simple example also shows that the loop

correction Lg decays exponentially with loop length.
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