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h i g h l i g h t s

• Cycles are measured in a standard Rock–Paper–Scissors human experiment.
• The existence of persistent cycles is confirmed from analyzing the evolutionary trajectories.
• The mean frequency of cycles is quantitatively measured.
• The observed highly stochastic but weak cyclic motions are quantitatively understood by a discrete-time logit dynamics model.
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a b s t r a c t

The Rock–Paper–Scissors (RPS) game is a widely used model system in game theory. Evo-
lutionary game theory predicts the existence of persistent cycles in the evolutionary tra-
jectories of the RPS game, but experimental evidence has remained to be rather weak. In
this work, we performed laboratory experiments on the RPS game and analyzed the social-
state evolutionary trajectories of twelve populations of N = 6 players. We found strong
evidence supporting the existence of persistent cycles. The mean cycling frequency was
measured to be 0.029 ± 0.009 period per experimental round. Our experimental obser-
vations can be quantitatively explained by a simple non-equilibrium model, namely the
discrete-time logit dynamical process with a noise parameter. Our work therefore favors
the evolutionary game theory over the classical game theory for describing the dynamical
behavior of the RPS game.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Evolutionary game theory (EGT) is becoming a general theoretical framework to analysis strategies behaviors [1–3]. EGT
is rooted in the classical game theory (CGT) [4] and the theory of evolution [5]. Different from CGT, EGT predicts there could
exist persistent cycles in the evolutionary trajectories in the strategy space [6–8].

As an example let us consider the standard Rock–Paper–Scissors (RPS) game. This is a prototype game in textbooks [1,4,6,
9,7]. In this game, dynamics equations (e.g., the standard replicator dynamics equations) in EGT predict that the evolutionary
trajectory will cycle around the Nash equilibrium persistently. However, the CGT predicts full random behavior: the system
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Table 1
Payoff matrix of the Rock–Paper–Scissors game. The
value of each matrix element is the payoff of the row
player’s strategy given the strategy of the column player.

R P S

R 1 0 2
P 2 1 0
S 0 2 1

is in amixed-strategy equilibriumwith each cyclicmotion being balanced completely by its reverse cyclicmotion. According
to the CGT theory, cycles (also referred to as excess loops) cannot be observed in the evolutionary trajectories in the long
run [8,10].

Empirical examples of the RPS cycles are constantly being discovered in nature, e.g., three morphs male lizard [11] and
others [12,13]. The environment for animal contests is decentralized, in which the encounter is pairwise, but population
strategy shows cyclic behaviors [1,11]. In general, human economic behaviors (e.g., exchanges) are also pairwise and not
centralized [14]. To test EGT in human game experiments [15], the traditional setting is decentralized (see review [16]), in
which a subject in each round competes with one random-pairwise opponent within a finite population [17–23]. In such
traditional setting experiment, whether the trajectories are persistent cycles instead of convergence to a Nash equilibrium
remains an open question [16,24,10]. Till now, no persistent cycle has been confirmed in the RPS experiment under such a
traditional setting [8,10], and furthermore no dynamics observation has been reported quantitatively.

In this paper, we study the evolutionary trajectories of the Rock–Paper–Scissors game from the perspective of non-
equilibrium statistical physics. In non-equilibrium statistical physics studies, formulating a physically meaningful measure
of the distance from equilibrium is an area of active research [25]. An equilibrium system satisfies the detailed balance
condition, which ensures the time reversal symmetry. However, detailed balance is broken in a non-equilibrium system
even in its stationary state, therefore various dynamical patterns may show up in the evolutionary trajectory. Several non-
equilibrium order parameters, such as entropy production [26,27] and velocity [28], have been constructed to characterize
the distance from equilibrium. In thisworkwe carry out laboratory experiments on the RPS game, andwe detect the possible
existence of persistent cyclic flows using an angular frequency as the non-equilibrium order parameter. A non-zero angular
frequency serves as a quantitative measure of the distance from equilibrium for the evolutionary trajectories. We also
compare our experimental observations with the predictions of a simple non-equilibrium model, the discrete-time logit
dynamical process with a noise parameter β .

Our experiments are the standard RPS games with the experimental setting of discrete time, random pairwise matching
and local information. This setting has its reality in biology and economics [16,14,18,19,8,17,20–22,29,30].We collect a total
number of twelve experimental trajectories from our experiments (each trajectory is the result of 300 rounds of the game)
and then analyze these trajectories. Like other previous experiments [17,19,21,22,31] and theories [32,33], the evolutionary
trajectories are highly stochastic, but using our non-equilibrium order parameter we are able to confirm that cycles exist
and do not dissipate. The mean frequency of cycles is about 0.029 ± 0.009 period per experimental round. This mean value
is used to evaluate the noise parameter β of the logit dynamics model, and a value of β ≈ 0.20 is obtained.

This paper is organized as the following. In the next sectionwe introduce the standard RPS game in the traditional setting
and describe our data analysis protocol. In Section 3 we describe our main experimental results. The experimental results
are compared with the predictions of the discrete-time logit dynamics model in Section 4. We conclude this work in the last
section.

2. Experimental setup and data analysis

There are three different pure strategies in the Rock–Paper–Scissors game, namely Rock (R), Paper (P) and Scissors (S).
These three strategies form a directed circle R → S → P → R, namely R beats S, S beats P , and P in turn beats R. In our
experiments we use the simple payoff matrix shown in Table 1 to make the RPS game a constant-sum game: In each play
between two players, the winning player gets a payoff 2 (i.e., two experimental points) while the losing player gets a payoff
0; if there is a tie then each player gets an equal payoff 1.

2.1. Experimental setting

Therewere twelve independent and disjoint groups in our laboratory experiments. Each groupwas formed by six players,
therefore the RPS game is a finite population gamewith population size N = 6. Each group played the RPS game 300 rounds
(we will explain the motivation to use 300 rounds later on). In each round of the play, the six players of each group were
first randomly assigned to three disjoint sub-groups by a computer program, and then the two players of each sub-group
played the RPS game once. All players made their own decisions simultaneously and anonymously. After all the players had
submitted their choices, each player then got the feedback information through her/his private computer screen. The feed-
back information included her/his own strategy, her/his opponent’s strategy, and her/his own payoff. No other information
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Fig. 1. Social state space and Poincaré section of the RPS game with N = 6 players. Each social state is represented by a point (x, y, z) on the plane
characterized by x + y + z = 1. All the 28 social states are distributed within or on the boundary of an equilateral triangle. The social state ( 1

3 , 1
3 , 1

3 ) is
the Nash equilibrium (NE) point. To detect possible persistent flowwithin the social state space, a line segment linking the Nash equilibrium point and the
social state ( 1

2 , 1
2 , 0) is drawn. This line is referred to as the Poincaré section.

was provided to the players. Each player also understood that her/his strategy in each round of the play is only shown to
her/his opponent of this round but not shown to the other players.

These 12 experimental sessions were conducted during December 2010 in the experimental social science laboratory
of Zhejiang University. The 72 experimental subjects (players) were recruited broadly from the student population of the
university. They were sitting in an isolated seat with a computer during the games. Both written and oral instructions were
provided for each player before the experiment. During the experiment, the players gained experimental points in each
round of the game according to the payoff matrix. The experimental sessions lasted about 1.5–2 h. The players got their
earnings in cash privately after the experiment according to the accumulated experimental points over the 300 rounds. The
exchange rule is one experimental point equals 0.15 Yuan RMB. In addition, each player got 5 Yuan RMB as show-up fee.
The average earning was about 50 Yuan RMB.

2.2. Data analysis

There are three pure strategies in the RPS game, therefore we use a vector (x, y, z) to denote a generic social state of the
population, with x, y and z being respectively the fraction of players using strategy R, P and S. Suppose at the t-th round of
the game, nR(t) players used strategy R, nP(t) players used strategy P , and nS(t) = N − nR(t) − nP(t) players used strategy
S. Then

x ≡
nR(t)
N

, y ≡
nP(t)
N

, z ≡
nS(t)
N

.

Obviously x, y, and z should satisfy x ≥ 0, y ≥ 0, z ≥ 0, and x + y + z = 1. The total number of different social states for a
population of size N is simply (N+1)(N+2)

2 . In the studied case of N = 6 this number is 28.
The social state (x, y, z) of a population at a given time point is a coarse-grained description about the strategies used by

the members of this population [23,8]. The set of all the social states of a population is referred to as the social state space
of the population. It can be represented graphically by an equilateral triangle in a three-dimensional Euclidean coordinate
system; see Fig. 1. Each social state (x, y, z) corresponds to a point in the interior or on the boundary of this triangle. The
central point ( 1

3 ,
1
3 ,

1
3 ) of the triangle is the Nash equilibrium (NE) point of the RPS game.

Generically speaking, the social state of the population is different at different rounds t of the repeated RPS game. The
social state (x, y, z) as a function of the discrete time t forms an evolutionary trajectory in the social state space [23,8,10,22];
see Fig. 2 for a simple illustration. After an evolution trajectory of T time steps has been collected, we then perform statistical
analysis on it. The first quantities of interest are the mean values of x, y and z, namely

x ≡
1
T

T
t=1

x(t), y ≡
1
T

T
t=1

y(t), z ≡
1
T

T
t=1

z(t). (1)
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Fig. 2. A pictorial view of a short segment of an experimentally recorded evolutionary trajectory, starting from t = 185 and ending at t = 190. The
counting numbers of the four social state transitions are, respectively, C185 = 0.5, C186 = 0.5, C187 = 0, C188 = −1 and C189 = 0. Therefore the
accumulated counting number of this trajectory segment is C185,190 = 0.

To detect weak but persist directional motion in the social state space, we follow Refs. [10,34] and set a line segment
between the Nash equilibrium point and a point chosen at the boundary of the triangle (see Fig. 1). Such a line segment is
referred to as a Poincaré section. Consider two consecutive social states s⃗(t) ≡


x(t), y(t), z(t)


and s⃗(t + 1) ≡


x(t + 1),

y(t+1), z(t+1)

. If either s⃗(t) or s⃗(t+1) is identical to the Nash equilibriumpoint, or if the line segment from s⃗(t) to s⃗(t+1)

does not cross the Poincaré section, then the transition s⃗(t) → s⃗(t + 1) is assigned a counting number Ct = 0. Otherwise,
(1) if the transition s⃗(t) → s⃗(t + 1) crosses the Poincaré section from left to right (counter-clockwise with respect to the
direction axis ( 1

√
3
, 1

√
3
, 1

√
3
) of the social state plane), then Ct = +1; (2) if this transition crosses the Poincaré section from

right to left (clockwise), then Ct = −1; (3) if s⃗(t) is on the Poincaré section but is different from the Nash equilibrium point,
then Ct = 0.5 (Ct = −0.5) if s⃗(t +1) is to the right (left) of the Poincaré section; (4) if s⃗(t +1) is on the Poincaré section but
is different from the Nash equilibrium point, then Ct = 0.5 (Ct = −0.5) if s⃗(t) is to the left (right) of the Poincaré section.
We give some concrete examples of computing Ct in Fig. 2.

The accumulated counting number Ct0,t1 of the evolutionary trajectory during the time interval [t0, t1] is defined as

Ct0,t1 ≡

t1−1
t=t0

Ct . (2)

The accumulated counting number Ct0,t1 quantifies the net number of cycles around the Nash equilibrium point. Such a
quantity can help us to detect deterministic behaviors in a stochastic process [34]. Starting from the initial time t0 = 1, if
C1,t scales linearly with t during the social-state evolution process, then it indicates the existence of persistent cycles around
the Nash equilibrium; if C1,t as a curve of t only fluctuates around 0, then there are no persistent cycles around the Nash
equilibrium. The mean frequency of cyclic motion in the time interval [t0, t1] is defined as

ft0,t1 ≡
Ct0,t1

t1 − t0
=

1
t1 − t0

t1−1
t=t0

Ct . (3)

Starting from the initial time t0 = 1, we are interested in the value of f1,t as t becomes large.

3. Experimental results

Table 2 lists the total number of times the three strategies have been used in each of the 12 evolutionary trajectories.
Among the twelve evolutionary trajectories of length 300, the total number of times the strategy R, P and S being used
is, respectively, 7702, 6937 and 6961. The mean value of x, y and z as defined in Eq. (1), is then x = 0.357 ± 0.005, y =

0.321 ± 0.004 and z = 0.322 ± 0.007 (the standard deviation is estimated over the 12 evolution trajectories; see Table 2).
The observed mean point (x, y, z) is only slightly different from the theoretical Nash equilibrium point ( 1

3 ,
1
3 ,

1
3 ).
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Table 2
Statistics on the strategies. #R denotes the total number of times the strategy
R being chosen by members of a given population (#P and #S have similar
meanings). x, y, z are defined by Eq. (1).

Group #R #P #S x y z

1 675 601 524 0.375 0.334 0.291
2 632 533 635 0.351 0.296 0.353
3 584 591 625 0.324 0.328 0.347
4 688 615 497 0.382 0.342 0.276
5 669 568 563 0.372 0.316 0.313
6 642 578 580 0.357 0.321 0.322
7 606 583 611 0.337 0.324 0.339
8 625 558 617 0.347 0.31 0.343
9 675 581 544 0.375 0.323 0.302

10 604 604 592 0.336 0.336 0.329
11 643 567 590 0.357 0.315 0.328
12 659 558 583 0.366 0.31 0.324

Round (t)

C
1,
t

Fig. 3. Accumulated counting number C1,t as a function of evolution time t . Each of the twelve curves corresponds to one evolutionary trajectory involving
six players.

The experimental trajectories are highly stochastic, similar to the observations on other game processes [17,19,21,29,22].
However, if we plot the evolution behavior of the accumulated counting number C1,t with time t in Fig. 3, we find that
C1,t increases with t in most of the data sets. The value of C1,300 for each of the 12 experimental trajectories is shown in
the last column of Table 3. We obtain that the mean value of C1,300 to be C1,300 = 8.54 ± 2.66. Accordingly, the mean
cycling frequency of these 12 evolutionary trajectories in 300 steps is f 1,300 = 0.029± 0.009. In other words, the empirical
frequency of the cycles is 0.029 ± 0.009 period per experimental round. The 95% confidence interval of this frequency is
[0.009, 0.048].

Statistical analysis on the 12 sampled values of C1,300 suggests that the null hypothesis H1 that C1,300 = 0 can be rejected
(p < 0.01, t-test). Therefore we can say that cycles do exist in the RPS game in our experiments. Statistical analysis also
shows that C1,300 > 0 (p < 0.01), i.e., the cycles are counter-clockwise around the Nash equilibrium point. This result is
consistent with the theoretical predictions of some evolutionary dynamics models [8,1,7].

According to the last row in Table 3, to confirm the existence of cycles using 12 samples, the trajectory length t should
be at least 150. This is because the null hypothesis (C1,t = 0) can be rejected (p < 0.05) only when t ≥ 150. That long
evolutionary trajectories are needed to confirm the existence of cycles can also be understood from the empirical fact that
the mean cycling frequency is very small.

To see the persistence of cycles, setting null hypothesis as C1,150 > C151,300 which means the cycles are disappearing
along time. This hypothesis can be rejected by experimental data (p = 0.06 < 0.10). Setting C1,100 > C201,300, this null
hypothesis can be rejected strongly (p < 0.01). Concerning the question ‘‘Do cycles dissipate when subjects must choose
simultaneously?’’ raised recently by the authors of Ref. [10], our experimental data therefore suggest that cycles do not
dissipate.
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Table 3
The accumulated counting number C1,t in the twelve evolutionary trajectories.

Group C1,50 C1,100 C1,150 C1,200 C1,250 C1,300

1 0.50 3.00 5.50 5.50 8.50 9.00
2 0.00 2.00 4.00 3.00 5.00 6.00
3 1.00 1.50 4.50 7.00 10.00 14.00
4 1.50 2.00 3.00 6.50 9.50 11.00
5 −3.00 −4.00 −5.00 −6.00 −4.00 −5.00
6 3.00 4.50 7.00 13.00 18.00 21.00
7 4.00 5.50 12.50 17.00 21.00 25.00
8 1.50 4.50 5.50 6.00 11.00 12.00
9 −3.50 −5.50 −3.50 −4.50 −2.50 −1.00

10 1.50 4.50 6.50 3.50 5.50 5.50
11 −2.00 −5.00 −3.50 −3.50 −3.50 −4.50
12 −0.50 0.50 2.50 3.50 6.50 9.50

Mean 0.33 1.13 3.25 4.25 7.08 8.54
95%L −1.12 −1.35 0.03 −0.04 2.09 2.68
95%U 1.78 3.60 6.47 8.54 12.07 14.40
p-value 0.62 0.34 0.05 0.05 0.01 0.01

The last four rows are the statistical results of the 12 experimental groups above. The row
titled as p-value is t-test result by setting the null hypothesis C1,t = 0 for the 12 samples.
95%U(L) means the upper (lower) bound of 95% confidence interval over the 12 samples.

4. Comparison with a simple model

To theoretically understand the experimental observations, we now study a noisy best-response process as a simple
model for the RPS game, namely the discrete-time logit dynamics [35]. Multiple equilibria and limit cycles in the logit
dynamics have also been studied in a very recent paper by Hommes and Ochea [36] in the continuous-time limit.

Suppose the population of N players is in the social state (x, y, z) after the t-th round of the game. Let us denote by ui the
mean payoff of the strategy i ∈ {R, P, S} for this social state. From the payoff matrix of Table 1 we can easily obtain that

uR = x + 2z, uP = y + 2x, uS = z + 2y. (4)

We assume that at the (t + 1)-round of the game, each player of the population will choose a strategy from {S, R, P}

independently of all the other players. And we further assume that the time-dependent probability pi for a player to choose
strategy i is

pi =
eβui

eβuS + eβuR + eβuP
, ∀i ∈ {R, P, S}. (5)

The parameter β is referred to as the ‘‘inverse temperature’’ of the logit dynamics, its value quantifies the rationality degree
of human agents in strategy interaction [35,37,38,20,39,40,7,41,42]. In the limiting case of β = 0 each strategy will be
chosen with the uniform probability 1

3 .

For this simple Markovian process, the transition probability T (x,y,z)
(x′,y′,z′) from a social state (x, y, z) at time t to another

social state (x′, y′, z ′) at time (t + 1) is expressed as (noticing that z ′
= 1 − x′

− y′)

T (x,y,z)
(x′,y′,z′) =

N!

(Nx′)!(Ny′)!(Nz ′)!
pNx

′

R pNy
′

P pNz
′

S

=
N!

(Nx′)!(Ny′)!(Nz ′)!

eNβ[xx′+yy′+zz′+2(xy′+yz′+zx′)]

(eβ(x+2z) + eβ(y+2x) + eβ(z+2y))N
. (6)

The steady-state probability W ∗

(x,y,z) that the system is in the social state (x, y, z) at t = ∞ can be obtained by solving the
following fixed-point equation

W ∗

(x,y,z) =


(x′,y′,z′)

T (x′,y′,z′)
(x,y,z) W ∗

(x′,y′,z′). (7)

Because the transition probability from any social state (x, y, z) to any another social state (x′, y′, z ′) is positive, Eq. (7) has
a unique solution with the normalization property


(x,y,z) W

∗

(x,y,z) = 1 [43]. It is not difficult to prove that the steady-state
probability distribution has the following rotational symmetry

W ∗

x,y,z = W ∗

y,z,x = W ∗

z,x,y. (8)
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Fig. 4. The steady-state mean cycling frequency f ∗ of the discrete-time logit dynamical process with population size N = 6. The solid line is theoretical
result obtained with Eq. (10); the cross (×) symbols with error bars are obtained by averaging over many simulated evolutionary trajectories of length
300. The mean experimental frequency of f 1,300 ≈ 0.029 and its 95% confidence upper and lower bound are marked by the dashed lines.

This rotational symmetry ensures that
(x,y,z)

xW ∗

(x,y,z) =


(x,y,z)

yW ∗

(x,y,z) =


(x,y,z)

zW ∗

(x,y,z) =
1
3
, (9)

namely the logit dynamics will reach the Nash equilibrium ( 1
3 ,

1
3 ,

1
3 ) at t → ∞.

It can be checked numerically and analytically that, for any β > 0, the detailed balance condition is violated at the
steady-state of the logit dynamics. For two different social states (x, y, z) and (x′, y′, z ′), in general we will find that

T (x,y,z)
(x′,y′,z′)W

∗

(x,y,z) ≠ T (x′,y′,z′)
(x,y,z) W ∗

(x′,y′,z′).

Because of the violation of detailed balance, directional flows may persist in the system even at t → ∞.
We are especially interested in the directional flow around theNash equilibriumpoint. Consider two social states (x, y, z)

and (x′, y′, z ′) on the evolutionary trajectory at two consecutive time points t and t + 1. If either (x, y, z) or (x′, y′, z ′)
is identical to the Nash equilibrium point, the transition (x, y, z) → (x′, y′, z ′) is not a rotational motion around the
Nash equilibrium, and we set the corresponding rotational angle θ

(x,y,z)
(x′,y′,z′) to be zero. The Nash equilibrium point may be

sitting on the rectilinear line that passing through the social states (x, y, z) and (x′, x′, z ′). If this is the case, the transition
(x, y, z) → (x′, y′, z ′) is also not a rotational motion around the Nash equilibrium, and its rotational angle θ

(x,y,z)
(x′,y′,z′) is again

set to be zero. In all the remaining cases, the social states (x, y, z), (x′, y′, z ′) and the Nash equilibrium point form a triangle
in the social state plane of Fig. 1. The magnitude of the rotational angle θ

(x,y,z)
(x′,y′,z′) is just the angle of this triangle at vertex

point ( 1
3 ,

1
3 ,

1
3 ), it must be less than π . The rotational angle θ

(x,y,z)
(x′,y′,z′) is defined as positive if the rotation from (x, y, z) to

(x′, y′, z ′) with respect to the Nash equilibrium point is counter-clockwise, otherwise it is defined as negative.
At the steady-state of the discrete-time logit dynamics, the mean frequency f ∗ that the evolution trajectory rotates

around the Nash equilibrium point can then be computed by the following formula

f ∗
≡

1
2π


(x,y,z)

W ∗

(x,y,z)


(x′,y′,z′)

T (x,y,z)
(x′,y′,z′)θ

(x,y,z)
(x′,y′,z′). (10)

For the population size N = 6, we show in Fig. 4 the steady-state mean frequency f ∗ as a function of the inverse tem-
perature β . To check the correctness of the theoretical calculations, we also perform computer simulations based on the
discrete-time logit dynamics model to generate a set of simulated evolutionary trajectories of length 300. The mean cycling
frequencies of these simulated evolutionary trajectories are also shown in Fig. 4. The agreement between analytical calcula-
tions and computer simulation results are very good.We find that f ∗ increases almost linearly with the inverse temperature
β when β < 1.5. Comparing the theoretical results with the mean frequency value of f 1,300 = 0.029, we infer the inverse
parameter should be set to β = 0.20.

At β = 0.20, we also perform computer simulations based on the discrete-time logic dynamics model to generate a
set of independent evolution trajectories of length T = 300. We then perform the same analysis on these trajectories and
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Fig. 5. Probability of staying in the social state (x, y, z) for a population of size N = 6. The horizontal axis is the predicted probability by the discrete-
time logit dynamics model with inverse temperature β = 0.20, while the vertical axis is the empirical probability measured from the 12 experimental
trajectories. Because of the rotational symmetry (8), the 28 social states can be coarse-grained into ten groups: (1), {(0, 0, 1), (0, 1, 0), (1, 0, 0)};
(2), {(0, 1

6 , 5
6 ), ( 1

6 , 5
6 , 0), ( 5

6 , 0, 1
6 )}; (3), {(0, 1

3 , 2
3 ), ( 1

3 , 2
3 , 0), ( 2

3 , 0, 1
3 )}; (4), {(0, 1

2 , 1
2 ), ( 1

2 , 1
2 , 0), ( 1

2 , 0, 1
2 )}; (5), {( 1

6 , 0, 5
6 ), ( 5

6 , 1
6 , 0), (0, 5

6 , 1
6 )}; (6),

{( 1
6 , 1

6 , 2
3 ), ( 1

6 , 2
3 , 1

6 ), ( 2
3 , 1

6 , 1
6 )}; (7), {( 1

6 , 1
3 , 1

2 ), ( 1
3 , 1

2 , 1
6 ), ( 1

2 , 1
6 , 1

3 )}; (8), {( 1
3 , 0, 2

3 ), ( 2
3 , 1

3 , 0), (0, 2
3 , 1

3 )}; (9), {( 1
3 , 1

6 , 1
2 ), ( 1

2 , 1
3 , 1

6 ), ( 1
6 , 1

2 , 1
3 )}; (10),

{( 1
3 , 1

3 , 1
3 )}. All the social states of a given group have the same stationary probability (the same horizontal-axis value) according to the theoretical model,

but their measured probabilities might be different (the mean vertical-axis value and the standard error).

find that the direction of the cycles is counter-clockwise and the mean cycling frequency is f ≈ 0.029, consistent with the
experimental result.

At β = 0.20, the steady-state probability W ∗

(x,y,z) of visiting each social state (x, y, z) as predicted by the logit dynamics
is compared with the empirically observed probability of visiting (x, y, z); see Fig. 5. The agreement between theory and
experiment is again very good.

Although the discrete-time noisy-response logit dynamicmodel can describe our experimental observations excellently,
we should point out an important difference between the model assumption and the experimental setting. In our exper-
iments, after each round of the game, each player only knows the strategy of her/his opponent but not the social state
of the whole population. However in the logit dynamics model, we assume that each player chooses a strategy based on
the knowledge of the current social state of the population; see Eq. (5). In this sense, the logit dynamics model is still a
phenomenological model. It is of interest to quantitatively describe the RPS evolutionary dynamics by a more microscopic
model. We hope to return to this issue in a future study.

5. Conclusion and discussions

As a brief summary, in this work we studied the Rock–Paper–Scissors game both experimentally and analytically. Our
experimental data gave strong evidence that counter-clockwise cycles around the Nash equilibrium point exist in the
social-state evolutionary trajectory of a finite population. We demonstrated that our experimental observations can be
quantitatively understood by a simple theoretical model of noisy-response logit dynamics.

RPS game experiments on EGT were also reported quite recently by Cason and co-authors and by Hoffman and co-
authors [10,8]. The backgrounds and cutting edges of the experiment research arewell documented in these two Refs. [10,8].
Compared with the decentralized setting of our present work, the experimental environments of the RPS game in these
two recent works [10,8] are all centralized: Instead of pairwise meetings, in all of the experiments reported in Refs. [10,8],
each subject competes against the choices of all other subjects. However, the decentralized setting (especially the random
matching pairwise setting) is more closer to the natural environments in biology and economics (e.g., Refs. [16,14]). For
example, the encounters of male lizards are pairwise meetings [11]. For decentralized population RPS games, according to
our knowledge, the existence of persistent cyclic motions was not confirmed by any previous laboratory experiments.

Going back to traditional (decentralized) setting experiments of the simplest RPS game, the present work added strong
evidence in favor of the existence of persistent cycles. As a fundamental observation on cycle, the mean frequency of
cycles was quantitatively measured. There are tens of dynamics models which have been build to interpret cyclic behavior
in RPS game, however there are rare quantitative observations from real experiments. Quantitative measurements from
experiments are important, without which to evaluate a dynamics equation precisely is almost impossible (or plausible).
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As demonstrated, our experimental observations can be quantitatively understood by a simple theoretical model of noisy-
response logit dynamics.

We wish to emphasize two major points of our experimental approach. First, by recording sufficiently long evolutionary
trajectories, we were able to detect weak deterministic motion in a highly stochastic process. We noticed that cycles can
only be confirmed (p < 0.05) when the trajectories are longer than 150 rounds in twelve samples. Second, we focus on
time asymmetry of social state transitions. Importance of time asymmetry has been well emphasized in non-equilibrium
statistical physics [34,25,44]. The frequency is observed from the loops out of detailed balance.

Acknowledgments

We thank Ken Binmore for helpful discussion and Zunfeng Wang for technical assistance. The work of B.X. and Z.W. was
supported by a grant from the 985 Project at Zhejiang University and by SKLTP of ITP-CAS (No. Y3KF261CJ1). The work of
H.J.Z. was supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KJCX2-EW-J02) and the
National Science Foundation of China (grant Nos. 11121403 and 11225526).

References

[1] J. Smith, Evolution and the Theory of Games, Cambridge University Press, 1982.
[2] E. Frey, Evolutionary game theory: theoretical concepts and applications to microbial communities, Physica A 389 (2010) 4265–4298.
[3] D. Friedman, Evolutionary economics goes mainstream: a review of the theory of learning in games, Journal of Evolutionary Economics 8 (1998)

423–432.
[4] J. Von Neumann, O. Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, 1944.
[5] C. Darwin, On the Origin of Species, Murray, London, 1859.
[6] J. Weibull, Evolutionary Game Theory, The MIT Press, 1997.
[7] W. Sandholm, Population Games and Evolutionary Dynamics, The MIT Press, 2011.
[8] M. Hoffman, S. Suetens, M. Nowak, U. Gneezy, An experimental test of nash equilibrium versus evolutionary stability, 2012. Preprint.
[9] M.A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life, Harvard University Press, 2006.

[10] T. Cason, D. Friedman, E. Hopkins, Cycles and instability in a Rock–Paper–Scissors population game: a continuous time experiment, 2012. Preprint.
[11] B. Sinervo, C. Lively, The Rock–Paper–Scissors game and the evolution of alternative male strategies, Nature 380 (1996) 240–243.
[12] S.R. Pryke, S.C. Griffith, Red dominates black: agonistic signalling among head morphs in the colour polymorphic gouldian finch, Proceedings of the

Royal Society B: Biological Sciences 273 (2006) 949–957.
[13] B. Kerr, M. Riley, M. Feldman, B. Bohannan, Local dispersal promotes biodiversity in a real-life game of Rock–Paper–Scissors, Nature 418 (2002)

171–174.
[14] F.A. Hayek, The use of knowledge in society, American Economic Review 35 (1945) 519–530.
[15] A. Falk, J. Heckman, Lab experiments are a major source of knowledge in the social sciences, Science 326 (2009) 535.
[16] L. Samuelson, Evolution and game theory, The Journal of Economic Perspectives 16 (2002) 47–66.
[17] D. Friedman, Equilibrium in evolutionary games: some experimental results, The Economic Journal 106 (1996) 1–25.
[18] J. Van Huyck, F. Rankin, R. Battalio, What does it take to eliminate the use of a strategy strictly dominated by a mixture? Experimental Economics 2

(1999) 129–150.
[19] Y. Cheung, D. Friedman, A comparison of learning and replicator dynamics using experimental data, Journal of Economic Behavior and Organization

35 (1998) 263–280.
[20] R. Battalio, L. Samuelson, J. Van Huyck, Optimization incentives and coordination failure in laboratory stag hunt games, Econometrica 69 (2001)

749–764.
[21] J. Van Huyck, Emergent conventions in evolutionary games, in: Handbook of Experimental Economics Results, Vol. 1, 2008, pp. 520–530.
[22] K. Binmore, J. Swierzbinski, C. Proulx, Does minimax work? An experimental study, The Economic Journal 111 (2001) 445–464.
[23] B. Xu, Z. Wang, Evolutionary Dynamical Pattern of ‘‘Coyness and Philandering’’: Evidence from Experimental Economics, in Unifying Themes in

Complex Systems Volume VIII, NECSI Knowledge Press, ISBN: 978-0-9656328-4-3, 2011, pp. 1313–1326.
[24] M. Benaı̄m, J. Hofbauer, E. Hopkins, Learning in games with unstable equilibria, Journal of Economic Theory 144 (2009) 1694–1709.
[25] D. Sivak, G. Crooks, Near-equilibrium measurements of nonequilibrium free energy, Physical Review Letters 108 (2012) 150601.
[26] G. Wang, E. Sevick, E. Mittag, D. Searles, D. Evans, Experimental demonstration of violations of the second law of thermodynamics for small systems

and short time scales, Physical Review Letters 89 (2002) 50601.
[27] B. Andrae, J. Cremer, T. Reichenbach, E. Frey, Entropy production of cyclic population dynamics, Physical Review Letters 104 (2010) 218102.
[28] N. Kumar, S. Ramaswamy, A. Sood, Symmetry properties of the large-deviation function of the velocity of a self-propelled polar particle, Physical

Review Letters 106 (2011) 118001–118004.
[29] R. Selten, T. Chmura, Stationary concepts for experimental 2 × 2-games, American Economic Review 98 (2008) 938–966.
[30] C. Plott, V. Smith, Handbook of Experimental Economics Results, North-Holland, 2008.
[31] D. Semmann, H.-J. Krambeck, M. Milinski, Volunteering leads to Rock–Paper–Scissors dynamics in a public goods game, Nature 425 (2003) 390–393.
[32] D. Vilone, A. Robledo, A. Sánchez, Chaos and unpredictability in evolutionary dynamics in discrete time, Physical Review Letters 107 (2011) 038101.
[33] T. Galla, Intrinsic noise in game dynamical learning, Physical Review Letters 103 (2009) 198702.
[34] D. ben Avraham, S. Dorosz, M. Pleimling, Entropy production in nonequilibrium steady states: a different approach and an exactly solvable canonical

model, Physical Review E 84 (2011) 011115.
[35] L.E. Blume, The statistical mechanics of strategic interaction, Games and Economic Behavior 5 (1993) 387–424.
[36] C.H. Hommes, M.I. Ochea, Multiple equilibria and limit cycles in evolutionary games with logit dynamics, Games and Economic Behavior 74 (2012)

434–441.
[37] C. Watkins, P. Dayan, Q-learning, Machine Learning 8 (1992) 279–292.
[38] R. McKelvey, T. Palfrey, Quantal response equilibria for normal form games, Games and Economic Behavior 10 (1995) 6–38.
[39] D.H. Wolpert, M. Harre, E. Olbrich, N. Bertschinger, J. Jost, Hysteresis effects of changing the parameters of noncooperative games, Physical Review E

85 (2012) 036102.
[40] J. Hofbauer, K. Sigmund, Evolutionary game dynamics, Bulletin of the American Mathematical Society 40 (2003) 479.
[41] A. Traulsen, D. Semmann, R.D. Sommerfeld, H.-J. Krambeck, M. Milinski, Human strategy updating in evolutionary games, Proceedings of the National

Academy of Sciences 107 (2010) 2962–2966.
[42] A. Kianercy, A. Galstyan, Dynamics of Boltzmann Q learning in two-player two-action games, Physical Review E 85 (2012) 041145.
[43] J.G. Kemeny, J.L. Snell, Finite Markov Chains; With a New Appendix ‘‘Generalization of a Fundamental Matrix’’, Springer-Verlag, New York, 1983.
[44] D. Evans, E. Cohen, G. Morriss, Probability of second law violations in shearing steady states, Physical Review Letters 71 (1993) 2401–2404.

http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref1
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref2
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref3
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref4
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref5
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref6
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref7
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref9
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref11
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref12
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref13
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref14
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref15
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref16
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref17
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref18
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref19
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref20
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref21
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref22
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref23
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref24
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref25
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref26
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref27
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref28
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref29
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref30
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref31
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref32
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref33
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref34
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref35
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref36
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref37
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref38
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref39
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref40
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref41
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref42
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref43
http://refhub.elsevier.com/S0378-4371(13)00557-8/sbref44

	Cycle frequency in standard Rock--Paper--Scissors games: Evidence from experimental economics
	Introduction
	Experimental setup and data analysis
	Experimental setting
	Data analysis

	Experimental results
	Comparison with a simple model
	Conclusion and discussions
	Acknowledgments
	References


