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Abstract The random K-satisfiability (K-SAT) problem is very difficult when the clause density is close to the
satisfiability threshold. In this paper we study this problem from the perspective of solution space coupling. We divide
a given difficult random K-SAT formula into two easy sub-formulas and let the two corresponding solution spaces to
interact with each other through a coupling field x. We investigate the statistical mechanical property of this coupled
system by mean field theory and computer simulations. The coupled system has an ergodicity-breaking (clustering)
transition at certain critical value xd of the coupling field. At this transition point, the mean overlap value between the
solutions of the two solution spaces is very close to 1. The mean energy density of the coupled system at its clustering
transition point is less than the mean energy density of the original K-SAT problem at the temperature-induced clustering
transition point. The implications of this work for designing new heuristic K-SAT solvers are discussed.
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1 Introduction

The random K-satisfiability (K-SAT) problem is

a fundamental problem in the field of computational

complexity.[1−3] The solution space statistical property of

the random K-SAT problem has been intensively studied

by researchers from the statistical physics community in

the last twenty years.[4−6] Deep insights on the evolution

of the solution space structure have been achieved by the

mean field theory of spin glasses.[5,7−9]

An instance (or formula) of the random K-SAT prob-

lem is composed of N binary (spin) variables and M

clauses, with each clause being a constraint over K ran-

domly chosen variables. The random K-SAT problem is

controlled by a single structural parameter, the clause den-

sity α ≡ M/N . On average each variable is constrained

by Kα clauses. The satisfiability threshold of the random

K-SAT problem, αs(K), marks the critical value of clause

density beyond which it is impossible to satisfy simulta-

neously all the clauses of a large random K-SAT formula.

The value of αs(K) has been estimated by the mean field

theory. For example, αs(3) ≈ 4.267 and αs(4) ≈ 9.931.[10]

For α < αs(K), the non-empty solution space of a ran-

dom K-SAT formula is formed by all the configurations

of the N variables that satisfy simultaneously all the M

clauses. This solution space experiences an ergodicity-

breaking (or clustering) transition at a critical clause den-

sity αd(K). The value of αd(K) has also been estimated

by the mean field theory, for example, αd(3) ≈ 3.86 and

αd(4) ≈ 9.38.[9,11−12]

The random K-SAT problem in the clause density

interval α ∈ [αd(K), αs(K)] is not easy to solve, espe-

cially for formulas with α very close to the satisfiabil-

ity threshold αs(K).[8,13−15] At α ≈ αs(K), the solu-

tions of a random K-SAT formula are distributed into

many tiny clusters, these solution clusters are widely sep-

arated, and within each solution cluster a large number

of variables have fixed spin values (the so-called freezing

situation[16−17]) At α ≈ αs(K) even the most powerful al-

gorithm, the survey propagation algorithm,[8] fails to find

solutions (for example, it works for α < 4.25 for the ran-

dom 3-SAT problem).

In this paper we study the random K-SAT problem

from the viewpoint of solution space coupling. We dis-

tribute the M = αN clauses of a random K-SAT formula

F into two sub-formulas F1 and F2 and let each sub-

formula contain half of the clauses. The clause density

α of the original formula F is close to αs(K) and its so-

lution space (denoted as S) has a very complicated struc-

ture. Since each sub-formula has a much smaller clause

density α′ = α/2 < αd(K), it is very easy to solve and

its solution space (denoted as S1 for F1 and S2 for F2) is

ergodic and relatively simple. The solution space S is the

intersection of S1 and S2. We then apply a coupling field x

between the solution spaces S1 and S2 and study how the

statistical property of this coupled system changes with x.

We find the coupled system has no field-induced clus-

tering transition if the clause density α < αd(K). This

indicates that if we slowly increase the value of x from

zero, we can reach a configuration that satisfies all the M

clauses of the original system. In other words, the ran-
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dom K-SAT problem can be solved by simulated anneal-

ing on the coupling field x when α < αd(K). However, if

α > αd(K) a field-induced clustering transition will occur

at certain critical value of x. This indicates that when

α > αd(K) the simulated annealing on x will have a very

high probability of being trapped by one of the many er-

godic domains of the coupled configuration space and fail

to reach a true solution of the original formula.

We compare the temperature-induced clustering tran-

sition of the original K-SAT problem F and the coupling-

induced clustering transition of the coupled system F1 +

F2. We notice that the energy density at the coupling-

induced clustering transition is noticeably lower than that

at the temperature-induced clustering transition. This

suggests that solution space coupling is an efficient ap-

proach to construct low-energy configurations for a given

random K-SAT formula. If we allow the two sub-formulas

F1 and F2 to share a subset of clauses, the simulated an-

nealing process on x can reach configurations with even

lower energy values. By properly adjusting the shared

subset of clauses between sub-formulas F1 and F2, the

solution space coupling approach might be able to solve

a given random K-SAT formula even at α > αd(K). A

stochastic search algorithm based on the solution space

coupling idea was applied to the perception learning prob-

lem in an earlier paper.[18]

The paper is organized as follows. Section 2 introduces

the random K-SAT problem and defines a partition func-

tion using the coupling field x as the control parameter.

In Sec. 3 we study solution space coupling in the random

3-SAT and 4-SAT problems using belief-propagation iter-

ations and simulated annealing simulations, and compare

the results on single problem instances with that obtained

by the replica-symmetric spin glass theory. The coupling-

induced clustering phase transition is further studied in

Sec. 4. We conclude our work in Sec. 5 and discuss some

possible extensions. The appendices of this paper contain

the analytical details of the mean-field theory.

2 The Random K-SAT Problem and

Partition Functions

A random K-SAT formula F contains N variables and

M clauses, with clause density α ≡ M/N . In this paper

we follow the convention in the literature and use letters

i, j, k, l, . . . to denote the variables and letters a, b, c, d, . . .

to denote the clauses. Each variable i has a binary spin

state σi ∈ {−1,+1}. A collection of the spin states

of all the N variables forms a configuration, denoted as

σ ≡ (σ1, σ2, . . . , σN ). The total number of configurations

is 2N . Each clause a is a constraint to a subset of K ran-

domly chosen variables from theN variables (this subset is

denoted as ∂a), which disfavors a single randomly chosen

spin assignment {−J i
a : i ∈ ∂a} among the 2K possible

assignments of these K variables (each J i
a ∈ {−1,+1}).

The energy of clause a is

∏

i∈∂a

1 − J i
aσi

2
.

The value of this energy is zero except for the spin assign-

ment {σi = −J i
a : i ∈ ∂a}, which has unit energy. Notice

that {J i
a : i ∈ ∂a} is a set of K fixed parameters specific

to clause a, each J i
a being independently setting to −1 or

+1 with equal probability. Given a spin configuration σ,

if the energy of a clause a is zero, this clause is said to be

satisfied by the configuration, otherwise clause a is said to

be violated (unsatisfied) by the configuration.

Each configuration σ of formula F is associated with

an energy E(σ), which is the sum of theM clause energies:

E(σ) =
∑

a∈F

∏

i∈∂a

1 − J i
aσi

2
. (1)

The configuration energy E(σ) is non-negative and

integer-valued, it counts the total number of violated

clauses by configuration σ. If a configuration σ has zero

energy, it is regarded as a solution of formula F . The

solution space S of F is composed of all the solutions of

F , namely S ≡ {σ : E(σ) = 0} . It is convenient to rep-

resent a random K-SAT formula F by a bipartite graph

with N + M nodes and K ×M edges.[6,19] (see Fig. 1).

N of the nodes represent the variables (i, j, k, . . .) and the

other M nodes represent the clauses (a, b, c, . . .). All the

edges are between a variable node and a clause node: an

edge (i, a) between a variable node i and a clause node a

is present if (and only if) clause a involves variable i, and

this edge has a coupling constant J i
a which indicates that

clause a prefers variable i to be in spin state σi = J i
a.

Fig. 1 The factor graph of a small 3-SAT formula with
N = 6 variables and M = 4 clauses. The edge (i, a)
between a variable i and a clause a is a full line if the
coupling constant J i

a = 1 and is a dashed line if J i

a = −1.
The 3-SAT formula is divided into two sub-formulas,each
of them contains M/2 clauses.

We will refer to a random K-SAT formula F always in

its bipartite graph representation. This random bipartite

graph (also called a factor graph) is locally tree-like: short

loops are very seldom, and typical loops have lengths at

the scale of ln(N).[6,19]
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Let us denote by ∂i the set of clause nodes that a vari-

able node i is connected to. The size of this set ∂i is

referred to as the degree (or connectivity) of variable i. In

a random K-SAT formula with clause density α, the mean

degree of a variable is Kα; when the variable number N

is large enough, the probability that a randomly picked

variable is connected to n clauses obeys the Poisson dis-

tribution

P (n) =
e−Kα(Kα)n

n!
.

2.1 Temperature-Related Partition Function

A conventional partition function Z̃(β) for studying

the energy landscape of the random K-SAT problem is

defined as

Z̃(β) ≡
∑

σ

exp[−βE(σ)] , (2)

where β ≡ 1/T is the inverse temperature (T being the

temperature), and the summation is over all the 2N pos-

sible configurations.

The statistical system (2) has been studied in many

earlier papers (e.g., Refs. [9, 11, 20]). The Boltzmann fac-

tor e−βE(σ) directly disfavors high energy configurations,

and the mean energy of the system decreases with the in-

verse temperature β. At certain critical value β = βd an

ergodicity-breaking (clustering) transition occurs in the

system such that the configurations with energy density

ǫ < ǫd(K,α) are distributed into many different configu-

ration clusters, each of which can be regarded as a ther-

modynamic state of the system. The threshold energy

density ǫd(K,α) can be computed by the mean field spin

glass theory.[7,21]

2.2 Coupling-Related Partition Function

In this work we study the energy landscape of the ran-

dom K-SAT problem from another angle. Given a ran-

dom K-SAT formula F , we randomly partition its clauses

into two disjoint sets of equal size (M assumed to be

even), see Fig. 1. Two sub-formulas F1 and F2 are then

formed, each of which contains N variables and (α/2)N

clauses. For any spin configuration σ, the configuration

energy of sub-formula F1 is denoted as E1(σ) and that of

sub-formula F2 is denoted as E2(σ). Let us denote the

solution space of F1 as S1 and that of F2 as S2, namely

S1 ≡ {σ : E1(σ) = 0} and S2 ≡ {σ : E2(σ) = 0}. The

solution space of the whole formula F is the intersection

of these two spaces, S = S1 ∩ S2.

Consider a spin configuration σ(1) ∈ S1 and a spin

configuration σ(2) ∈ S2. The similarity between these two

configurations is quantified by the overlap q:

q(σ(1), σ(2)) =
1

N

N
∑

i=1

σ
(1)
i σ

(2)
i . (3)

If the two configurations σ(1) and σ(2) are identical, the

overlap between them achieves the maximal value 1. Let

us introduce a coupling field x between the two solution

spaces S1 and S2
[22] and define a partition function Z(x)

as

Z(x) =
∑

σ(1)∈S1

∑

σ(2)∈S2

exp
(

x

N
∑

i=1

σ
(1)
i σ

(2)
i

)

. (4)

In the above expression, each pair of configurations

(σ(1), σ(2)) contributes a Boltzmann weight eNxq(σ(1),σ(2)).

Under this reweighting, the mean overlap value between

a solution σ(1) ∈ S1 and a solution σ(2) ∈ S2 will be an

increasing function of x. Let us denote this function as

q(x), it is just the first derivative of lnZ(x):

q(x) ≡
1

N

d

dx
lnZ(x) . (5)

If x = 0, the solution spaces S1 and S2 are not coupled,

then q(x = 0) will be the overlap value between a typi-

cal configuration of S1 and a typical configuration of S2.

In the other limit of x → +∞, these two solution spaces

are strongly coupled together, and the mean overlap ap-

proaches 1.

In the partition function (4), the spin configuration

σ(1) is a solution of sub-formula F1 (namely E1(σ
(1)) = 0),

but the energy E2(σ
(1)) might be positive; similarly the

configuration energy E2(σ
(2)) = 0 but E1(σ

(2)) might be

positive. In this paper, the energy density of the coupled

system for a given pair of configurations (σ(1), σ(2)) is de-

fined as

ǫ12(σ(1), σ(2)) ≡
E2(σ

(1)) + E1(σ
(2))

2N
. (6)

The statistical system (4) actually corresponds to a

system of two coupled random walkers. Each random

walker is restricted to moving within the solution space

of one K-SAT sub-formula,[15] but they mutually affect

each other due to the coupling field x. We are interested

in the evolution of the statistical physics property of such

a coupled system as the values of the control parameter

x is changed. When the original K-SAT formula F has

clause density α ≈ αs(K), the clause density of the two

sub-formulas F1 and F2 are still below αd(K). Therefore

both the solution spaces S1 and S2 are ergodic and rela-

tively simple.[4,8,9,12,22−25]

3 Belief-Propagation and Simulated

Annealing Results

We perform belief-propagation (BP) iterations on sin-

gle instances of the random K-SAT problem at given val-

ues of the control parameter x for the statistical system

(4). If the BP iteration process converges for a given

problem instance, we compute the mean overlap value

q(x) and the mean energy density of the coupled sys-

tem at the BP fixed point. The free energy and the en-

tropy of the coupled system are also computed at the
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BP fixed point. These BP results are compared with

results obtained by simulated annealing (SA)[26−27] and

the ensemble-averaged mean-field population dynamics re-

sults.

The BP iterative equations for the model (4) are listed

in the appendices. The details of the SA simulation are

as follows: We first construct a satisfying configuration

σ(1) for sub-formula F1 and another satisfying configura-

tion σ(2) for sub-formula F2. Then two single-spin flipping

processes are simulated in the solution spaces S1 and S2,

respectively.[15] These two solution space random walking

processes are coupled together due to the control param-

eter x, which increases from x = 0 in steps of ∆x = 0.1.

The waiting time at each value of x is set to be ∆T , namely

N×∆T flipping trials are performed for each spin-flipping

process at each fixed value of x.

3.1 The Random 3-SAT Problem

Figure 2 collects the results obtained on the random

3-SAT problem with clause density α = 4.25, close to the

satisfiability threshold value αs(3) = 4.267. For the single

problem instance of Fig. 2, the BP iteration is convergent

when the coupling field x < 1.92. The results obtained

by BP are in agreement with the results obtained by sim-

ulated annealing, and also in agreement with the results

obtained by mean-field population dynamics. These re-

sults suggest that, when x < 1.92, this coupled 3-SAT

system can be adequately described by the BP equations.
At x ≈ 1.92, BP fails to converge for the single prob-

lem instance of Fig. 2. At this value of coupling constant,

the mean overlap between the two solution spaces is about

0.93, that is, the configurations σ(1) and σ(2) only differ

in about 3.5% of the vertices. The mean energy density

of the two solutions is ǫ12 ≈ 0.021.
If x further increases above 1.92, although the mean

overlap value and the mean energy density value as pre-

dicted by the mean-field population dynamics keep chang-

ing with x, the corresponding values as obtained by SA

do not show much changing trend. This plateau behav-

ior and the non-convergence of BP indicate a qualitative

change in the statistical property of the coupled 3-SAT

problem instance occurs at x ≈ 1.92. As we will see in

the next section, this qualitative change is caused by the

ergodicity-breaking (clustering) transition of the coupled

system. The threshold coupling field value at this phase

transition (for N → +∞) is x ≈ 1.94.
For the random 3-SAT problem at clause density

α = 4.25, the conventional partition function (2) has a

temperature-induced clustering transition at the critical

temperature Tc ≈ 0.23. At this clustering transition point

the energy density is ǫd(3, 4.25) ≈ 0.04, which is twice

the energy density value of ǫ12 ≈ 0.021 at the coupling-

induced clustering transition. This difference in the en-

ergy density levels of the temperature- and coupling field-

induced ergodicity-breaking transitions suggests that, by

restricting configuration σ(1) to solution space S1 and σ(2)

to solution space S2 we can easily construct configurations

for a random K-SAT formula with energy density much

below ǫd(K,α).

Fig. 2 The random 3-SAT problem at α = 4.25. Mean-
field population dynamics results are compared with the
results obtained by BP and SA on a single small instance
with N = 103 variables. (a) Mean overlap; (b) Mean en-
ergy density; (c) Entropy density. The BP iteration no
longer converges at x > 1.92 for the single problem in-
stance. The waiting time of SA is set to ∆T = 500.

Figure 3 shows the results obtained on the random 3-

SAT problem with clause density α = 3.85, slightly below

the clustering transition point αd(3) = 3.86. In this case,

BP iteration is able to converge even at very large values

of x, and the results obtained by BP are in agreement with

SA results. The SA process is able to reach configurations

that satisfy the whole formula F .

The results of this subsection supports the expectation
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that, the coupled system has qualitative different statis-

tical properties when the clause density α changes from

α < αd(3) to α > αd(3). If α < αd(3), the coupled system

has no clustering transition, while if α > αd(3) a cluster-

ing transition occurs at a finite value of x.

Fig. 3 Same as Fig. 2, but for the random 3-SAT prob-
lem with clause density α = 3.85. The waiting time of
SA is set to ∆T = 500.

3.2 The Random 4-SAT Problem

Similar results are obtained on the random 4-SAT

problem. For this problem, the value of clause density

at the clustering transition is αd(4) = 9.38.[9,12]

The results on the coupled 4-SAT system at α = 8.5

are shown in Fig. 4. The BP iteration is convergent, and

the results obtained by BP are in agreement with the re-

sults obtained by SA and the mean-field population dy-

namics results. The SA process is able to reach configu-

rations that satisfy the whole formula F .

Figure 5 shows the results obtained on the random 4-

SAT problem with clause density α = 9.5, which is larger

than αd(4). The BP iteration also converges on the stud-

ied single instance even for very large values of the cou-

pling field x. However, the results obtained by BP on the

mean overlap q(x) are different from that obtained by SA

when x > 2.5. As for the mean energy density, the BP

predictions also deviate considerably from the results ob-

tained by SA when x > 2.5. We will demonstrate in the

next section that, in the thermodynamic limit N → ∞,

the coupled system at α = 9.5 has a clustering transition

when x ≈ 3.1.

Fig. 4 Same as Fig. 2, but for the random 4-SAT prob-
lem with clause density α = 8.5. The waiting time of SA
is set to ∆T = 500. The SA process reaches satisfying
configuration for the whole formula at x ≈ 2.7 and it
then stops.
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Fig. 5 Same as Fig. 2, but for the random 4-SAT prob-
lem with clause density α = 9.5. The BP iteration is
convergent but the results obtained by BP and SA do
not agree with each other when x > 2.5. The waiting
time of SA is set to ∆T = 1000.

4 On the Coupling-induced Phase transition

The numerical results of the preceding section suggest

that, for the random K-SAT problem with clause density

α > αd(K), a coupling-induced phase transition will occur

in the statistical model (4) at certain critical value xd of

the coupling field x. In this section, we apply the first-step

replica-symmetry-breaking (1RSB) spin glass mean field

theory to the partition function Z(x) to determine the

value of xd. An important quantity of the 1RSB mean field

theory is the complexity Σ, which is the entropy density

at the level of thermodynamic states.[28] The complexity

quantitatively characterizes the abundance of thermody-

namic states in the system. Here we describe the main

results of this theoretical calculation, while the analytical

details are again deferred to the appendices. To deter-

mine the clustering transition point xd we set the Parisi

parameter of the 1RSB mean field theory to be m = 1.

Figure 6 shows the 1RSB results for the random 3-

SAT problem with clause density α = 4.25 (for other val-

ues of α > αd(3) we obtain qualitatively similar results as

Fig. 6). The 1RSB theory predicts that, at the thermody-

namic limit N → +∞ an ergodicity-breaking (clustering)

transition occurs in the system at x = xd ≈ 1.94. When

x < xd, the complexity is Σ ≡ 0, indicating there is only

one thermodynamic state (the space formed by pairs of so-

lutions (σ(1), σ(2)) is ergodic). When x increases beyond

xd, the complexity Σ becomes negative. This indicates

that the system is no longer ergodic but an exponential

number of thermodynamic states emerge in the configura-

tion space. A sub-exponential number of thermodynamic

states dominate the statistical property of the system at

x > xd. This ergodicity-breaking phase transition ex-

plains the non-convergence of BP and the plateau behav-

ior of the SA process (the SA dynamics is no longer in

equilibrium when x > xd).

Figure 7 demonstrates how the critical coupling field

xd of the random 3-SAT problem changes when the clause

density α increases. The value of xd appears to diverge as

α = αd(3). It then decreases quickly with α.

Fig. 6 Complexity Σ as a function of the coupling field
x for the random 3-SAT problem with clause density
α = 4.25. The Parisi parameter is set to be m = 1
in the 1RSB calculations. The vertical line marks the
clustering transition point of x ≈ 1.94.

The 1RSB results for the random 4-SAT problem are

shown in Fig. 8. For clause density α > αd(4) there is also

a coupling-induced clustering transition at certain critical

value xd of the coupling field x. A qualitative difference

with the coupled random 3-SAT problem is that, at x = xd

the complexity Σ of the coupled random 4-SAT problem

jumps from Σ = 0 to a positive value. This indicates

that an exponential number of thermodynamic states are

contributing to the equilibrium statistical property of the

system. For the system with clause density α = 9.5, the
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clustering transition occurs at x = xd ≈ 3.1. The com-

plexity value jumps to Σ ≈ 0.005 at x = xd; it then de-

creases continuously with x and reaches a limiting positive

value at x → ∞. At x = xd the mean energy density of

the coupled system (α = 9.5) is ǫ12 ≈ 0.004, which is

about half of the energy density value ǫd(4, 9.5) ≈ 0.0081

at the temperature-induced clustering transition.

Fig. 7 Clustering transition point xd as a function of
clause density α for the random 3-SAT problem.

Fig. 8 The complexity for different clause density α in
the coupled random 4-SAT problem. The Parisi param-
eter of the 1RSB mean field calculations is set to m = 1.

5 Conclusion and Discussion

In this paper, we studied the random K-SAT problem

by dividing a K-SAT formula into two sub-formulas and

applying a coupling field between the solution spaces of

these two sub-formulas. We found an ergodicity-breaking

(clustering) transition occurs in this coupled system at

certain critical value of the coupling field x. At the

coupling-induced clustering transition the energy density

of the system is only about half the energy density at the

temperature-induced clustering transition.

As the coupled system has an ergodicity-breaking

phase transition at a finite value of x, it may not be

promising to use solution space coupling as a practical

algorithm for constructing a satisfying configuration for

a K-SAT formula. As the value of the coupling field x

slowly increases, the dynamics is likely to be trapped by a

non-optimal macroscopic state, which prohibits the over-

lap between the two configurations from further increas-

ing.

However, after the dynamics has been trapped by a

non-optimal macroscopic state, the unsatisfied clauses by

the configurations σ(1) and σ(2) can be identified. We can

then decrease the value of x slowly and add these clauses

to sub-formulas F1 and F2 during this process. Now sub-

formulas F1 and F2 share some common clauses. As x

further increases slowly, the dynamics for sure will not

be trapped by the same non-optimal macroscopic state

as before. If it is again trapped by another non-optimal

macroscopic state, we can repeat the decreasing-increasing

process of x to enlarge the set of shared clauses by sub-

formula F1 and F2. This heuristic process might be able

to reach a solution for the original K-SAT formula even

at α > αd(K). It will be of interest to test this idea by

extensive computer simulations.

In this work we only consider the coupling of two so-

lution spaces. It may also be interesting to study the

coupling of three or more solution spaces.

Appendix A: Belief-Propagation Equations

for the Coupled random

K-SATProblem

In the expression (4) for Z(x), the configuration sum-

mations are restricted to the solution spaces S1 and S2,

which are actually unknown to us. We now express Z(x)

in an alternative form which is convenient for performing

a partition function expansion. Define for each variable

node i a vector state ~σi ≡ (σ
(1)
i , σ

(2)
i ). The collection of

the vector states of all the N variables corresponds to two

spin configurations σ(1) and σ(2). Then, summing without

any restriction over all the possible vector states of each

variable node i, the partition function Z(x) is expressed

as

Z(x) =
∑

{~σi}

N
∏

i=1

ψi(~σi)
∏

c∈F

ψc(~σ∂c) . (A1)

In the above expression, ψi and ψc are, respectively, the

Boltzmann factor for variable i and clause c; ~σ∂c denotes

the vector states of the variables involved in clause c,

namely ~σ∂c ≡ {~σi : i ∈ ∂c}. The expression for ψi is

simply

ψi(~σi) ≡ exp
(

xσ
(1)
i σ

(2)
i

)

.

The Boltzmann factor for a clause, on the other hand, de-

pends on whether the clause belongs to sub-formula F1 or

F2: for a clause a of sub-formula F1, its Boltzmann factor

is

ψa ≡
[

1 −
∏

j∈∂a

1 − Jj
aσ

(1)
j

2

]

,
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while for a clause b of sub-formula F2, the Boltzmann fac-

tor is

ψb ≡
[

1 −
∏

j∈∂b

1 − Jj
bσ

(2)
j

2

]

.

It is easy to check that only those configuration pairs

(σ(1), σ(2)) with σ(1) ∈ S1 and σ(2) ∈ S2 have non-

vanishing contribution in the expression (A1).

Consider a variable node i of the random K-SAT for-

mula F . This variable has a state ~σi, and it is connected

to a set ∂i of clauses in the K-SAT formula F , its degree

being ni = |∂i|. If ni ≥ 1 we also introduce ni ‘image’

states

~σi→c ≡ {σ
(1)
i→c, σ

(2)
i→c}

for variable i, one for each clause c ∈ ∂i. All these ni

image states should all be identical to ~σi.

Consider a clause c and its associated K variables

i ∈ ∂c. Let us denote the state of such a sub-system as

~σc ≡ {~σi→c : i ∈ ∂c}, where ~σi→c is just the image state

of variable i to clause c. The total Boltzmann weight of

such a sub-system is denoted as Ψc(~σc), with

Ψc(~σc) ≡ ψc(~σc)
∏

i∈∂c

ψi(~σi→c) . (A2)

Regarding the ni image states of each variable i to be

independent states, the partition function expression (A1)

is rewritten as

Z(x) =
∏

c∈F

[

∑

~σc

Ψc(~σc)
]

N
∏

i=1

[

∑

~σi

ψi(~σi)
]1−ni

×
∏

(j,d)∈F

[

δ(~σj , ~σj→d)
]

. (A3)

In the above expression, (j, d) denotes an edge of the fac-

tor graph of the formula F , linking a variable node j and

a clause node d; the Kronecker delta function δ(~σj , ~σj→d)

is equal to 1 if the two vector states ~σj and ~σj→d are

identical, otherwise its value is 0.

Let us introduce to each edge (i, c) of the factor graph

of F an arbitrary probability distributionmc→i(~σi), which

is regarded as an estimated probability that variable i

takes state ~σi if it is only constrained by clause c. Then

it is easy to check that

Z(x) =
∏

c∈F

[

∑

~σc

Ψc(~σc)
∏

k∈∂c

∏

a∈∂k\c

ma→k(~σk→c)
]

×

N
∏

i=1

[

∑

~σi

ψi(~σi)
∏

b∈∂i

mb→i(~σi)
]1−ni

×
∏

(j,d)∈F

[

δ(~σj , ~σj→d)
]

. (A4)

In this expression, ∂k\c means the set of nearest-

neighboring clauses of variable node k, but with clause

c being removed from this set. It is interesting to notice

that the expression (A4) holds for any set of K ×M ar-

bitrary probability distributions {mc→i(~σi) : (i, c) ∈ F}.

We can define a marginal distribution for the state ~σi of

variable i and the state ~σc of clause c as

ωi(~σ ) =
1

Zi

ψi(~σi)
∏

c∈∂i

mc→i(~σi) , (A5)

ωc(~σc) =
1

Zc

Ψc(~σc)
∏

i∈∂c

∏

a∈∂i\c

ma→i(~σi→c) , (A6)

where the two normalization constants Zi and Zc are ex-

pressed as

Zi =
∑

~σi

ψi(~σi)
∏

c∈∂i

mc→i(~σi) , (A7)

Zc =
∑

~σc

Ψc(~σc)
∏

i∈∂c

∏

a∈∂i\c

ma→i(~σi→c) . (A8)

Then Eq. (A4) is re-expressed as

Z(x) = Z0

∏

c∈F

[

∑

~σc

ωc(~σc)
]

N
∏

i=1

[

∑

~σi

ωi(~σi)
]

×
∏

(j,d)∈F

[

1 + ∆(j,d)(~σj , ~σj→d)
]

, (A9)

where

Z0 ≡
∏

c∈F

Zc

N
∏

i=1

Z
(1−ni)
i , (A10)

∆(i,a)(~σi, ~σi→a) ≡
δ(~σi, ~σi→a)

ωi(~σi)
− 1 . (A11)

We can expand the edge product of Eq. (A9) to obtain

the following expression for Z(x):

Z(x) = Z0 ×
[

1 +
∑

f⊆F

Lf

]

. (A12)

In the above expression, f denotes a subgraph of the factor

graph of formula F , which contains a set of edges (i, a) of

the original factor graph and the associated variable and

clause nodes; Lf is the correction contribution to the par-

tition function by the sub-graph f , with the expression

Lf =
∏

c∈f

[

∑

~σc

ωc(~σc)
]

∏

i∈f

[

∑

~σi

ωi(~σi)
]

×
∏

(j,d)∈f

∆(j,d)(~σj , ~σj→d) . (A13)

For a factor graph with K ×M edges, the total num-

ber of non-empty subgraphs is 2KM − 1. Each of these

subgraphs f contributes a term Lf to the summation of

Eq. (A12). Therefore even for a moderate value of M the

number of correction terms in Eq. (A12) will be exponen-

tially large. A nice property is that a major faction of all

the correction terms Lf can be made to vanish, namely

Lf = 0.[29−31] Consider any subgraph f with a dangling

edge (i, c), namely either variable node i or clause node c

has no other edges connected to it within the subgraph f .
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It is easy to check from Eq. (A13) that, if
∑

~σc

ωc(~σc)δ(~σi→c, ~σi) = ωi(~σi) , (A14)

then the correction contribution of such a subgraph is

Lf = 0. If the self-consistency condition (A14) holds

on all the edges of the factor graph of formula F , then

Eq. (A12) is simplified to

Z(x) = Z0 ×
[

1 +
∑

f loop⊆F

Lf loop

]

, (A15)

where f loop denotes a subgraph in which each node is con-

nected by at least two edges (such a subgraph is composed

purely of loops).

For a random K-SAT formula F , the typical length of

a loop in its factor graph is of order lnN , therefore the

correction contribution Lf loop of a loopy subgraph f loop

is of order ∆ln N , where ∆ is proportional to the mean

magnitude of an edge factor ∆(i,a) defined by Eq. (A11).

In the case ∆ < 1 (which we assume), ∆ln N → 0 in the

limit of N ≫ 1. If we neglect all the loopy correction con-

tributions of Eq. (A15), a simple approximation for the

partition function is then obtained, with

Z(x) ≈ Z0 . (A16)

The self-consistent equation (A14) leads to the follow-

ing belief-propagation equation for the introduced proba-

bility mc→i(~σi):

mc→i(~σi) ∝
∑

{~σj :j∈∂c\i}

ψc

(

~σi, {~σj : j ∈ ∂c\i}
)

×
∏

j∈∂c\i

[

ψj(~σj)
∏

a∈∂j\c

ma→j(~σj)
]

. (A17)

(i) Thermodynamic Quantities

The set of BP equations (A17) and the partition

function approximation (A16) form the replica-symmetric

mean-field theory for the coupled system (4). Under this

approximation, the mean overlap q(x), between a solution

of S1 and a solution of S2, is obtained by

q(x) =
1

N

N
∑

i=1

∑

~σi

σ
(1)
i σ

(2)
i ωi(~σi) . (A18)

The mean energy of a configuration of S2 to the sub-

formula F1 is denoted as E1(x), and the mean energy of

a configuration of S1 to the sub-formula F2 is denoted as

E2(x). The expressions for these two energies are

E1(x) =
∑

a∈F1

∑

~σa

ωa(~σa)
∏

i∈∂a

1 − J i
aσ

(2)
i

2
, (A19)

E2(x) =
∑

b∈F2

∑

~σb

ωb(~σb)
∏

j∈∂b

1 − Jj
bσ

(1)
j

2
. (A20)

The total entropy S of the system is expressed as

S = lnZ0 −Nxq(x) . (A21)

This entropy S measures the abundance of configuration

pairs (~σ(1), ~σ(2)) with mean overlap q(x).

(ii) Ensemble Average by Population Dynamics

Each clause a of the sub-formula F1 sends out K mes-

sages ma→i(~σi) to its K neighbors i ∈ ∂a. If we collect all

such messages from all the M1 = (α/2)N clauses of for-

mula F1, we obtain a large set of KM1 messages. This set

of probability distributions can be described by a probabil-

ity density functional Q1[m(~σ)], which gives the fraction

of times a probability distribution m(~σ ) appears in the

message set. The expression for Q1[m(~σ )] is

Q1[m(~σ )] ≡
1

KM1

∑

a∈F1

∑

i∈∂a

δ
(

m(~σ ) −ma→i(~σ )
)

. (A22)

The functional Q1[m(~σ )] is normalized,
∫

DmQ1[m(~σ )] = 1 ,

where
∫

D means integration over all possible probabil-

ity distributions m(~σ ). A probability density functional

Q2[m(~σ )] can be constructed for the sub-formula F2 in

the same way as Eq. (A22). These two probability den-

sity functionals give a probabilistic description about the

clause-to-variable messages for the random K-SAT for-

mula F .

In the thermodynamic limit of N → ∞, because of the

central limit theorem, the two probability density func-

tionals Q1[m(~σ )] and Q2[m(~σ )] will be independent of

the structural details of the random K-SAT formula F

but only depend on the clause density α and the control

parameter x. Two coupled self-consistent equations for

Q1[m(~σ )] and Q2[m(~σ )] can be easily derived after some

probabilistic considerations about the local environment

of a randomly chosen clause.

Let us randomly choose a clause c from sub-formula F1,

which is connected to variable i and K−1 other variables

j ∈ ∂a\i. The K edge couplings of clause c are mutually

independent, each of which having equal probability to be

+1 or −1. Each neighboring variable j of clause c might

also connect to other clauses besides c. The probability

Pnn(k) that the nearest-neighbor variable j of clause c

has k connections is proportional to the product of k and

P (k), i.e.,

Pnn(k) =
kP (k)

∑∞
k=1 kP (k)

=
e−Kα(Kα)k−1

(k − 1)!
, k ≥ 1

which is also a Poisson distribution but with k ≥ 1. Each

of the k − 1 other connected clauses of the variable j has

equal probability to belong to sub-formula F1 and to sub-

formula F2. Therefore, the probability that message from

clause c to variable i being equal to m(~σi) is calculated to

be

Q1[m(~σi)] =
1

2K

∑

Ji
c=±1

K−1
∏

j=1

[

∑

J
j
c =±1

+∞
∏

kj=1

Pnn(kj)
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×

kj−1
∏

b=1

∫

Dmb→j

(Q1[mb→j ]

2
+
Q2[mb→j ]

2

)]

× δ
(

m(~σi) −mc→i(~σi)
)

, (A23)

where the expression for the probability distribution

mc→i(~σi) is given by Eq. (A17) with clause c belonging

to sub-formula F1. A similar self-consistent equation can

be written down for Q2[m(~σi] but with clause c being cho-

sen from sub-formula F2.

The self-consistent equation (A23) can be solved

by population dynamics simulations[6−7,32] as commonly

used in the literature. Based on the two probability den-

sity functionals Q1[m(~σ )] and Q2[m(~σ )], the mean over-

lap value and the densities of the other thermodynamic

quantities mentioned in Appendix A1 can all be calcu-

lated. These ensemble-averaged results can be compared

with the results obtained on a single problem instance by

the BP iteration process.

Appendix B: Details of the 1-RSB Calculation

at Parisi Parameter m = 1

First, standard belief propagation method is applied

and the messages are defined similarly. pi→c(σ
(1)
i , σ

(2)
i )

is the cavity probability that vertex i is in the state

(σ
(1)
i , σ

(2)
i ) in the absence of c, one of its neighboring con-

straints (we use the index c to represent any clause be-

longing to F1 or F2):

pi→c(σ
(1)
i , σ

(2)
i ) =

1

Zi→c

exp(xσ
(1)
i σ

(2)
i )

∏

a∈∂i\c

(

1 − δ
−Ji

a

σ
(1)
i

∏

j∈∂a\i

∑

σ

pj→a(−Jj
a , σ)

)

×
∏

b∈∂i\c

(

1 − δ
−Ji

b

σ
(2)

i

∏

j∈∂b\i

∑

σ

pj→b(σ,−J
j
b )

)

≡ FRS . (A24)

where δn
m is the Kronecker symbol (δn

m = 1 if m = n and δn
m = 0 if m 6= n), and a denotes a clause belonging to F1

and b denotes a clause belonging to F2. Once reaching the fixed point, the mean overlap q̄(x) and the entropy density

s(q) both can be calculated.

Then, the 1RSB description is like this:

ψi→c(pi→c) =
1

Zi→c

∫

∏

a∈∂i\c

∏

j∈∂a\i

dψj→a(pj→a)
∏

b∈∂i\c

∏

j∈∂b\i

dψj→b(pj→b)δ(pi→c −FRS) e−y∆Fi→c . (A25)

We denote the distribution of pi→c among all the Gibbs stats by ψi→c(pi→c) and define p̄i→c(σ
(1)
i , σ

(2)
i ) as the average

probability,

p̄i→c(σ
(1)
i , σ

(2)
i ) =

∫

dψi→c(pi→c)pi→c(σ
(1)
i , σ

(2)
i ) . (A26)

It is easy to see that this average probability obeys the same iterative equations as pi→c (Eq. (A24)). To get rid of the

reweighting factor in the self-consistence equation Eq. (A25), we define a conditional probability when the value of the

spin pair is (σ
(1)
i , σ

(2)
i ) and the mean probability p̄i→c is given.

ψ
(σ

(1)
i

,σ
(2)
i

)

i→c (pi→c|p̄i→c) ≡
ψi→c(pi→c)pi→c(σ

(1)
i , σ

(2)
i )

p̄i→c(σ
(1)
i , σ

(2)
i )

=

∫

∏

a∈∂i\c

∑

{σ
(1)

j
,σ

(2)

j
}

µ
(σ

(1)
i

,σ
(2)
i

)
a

∏

j∈∂a\i

dψ
(σ

(1)
j

,σ
(2)
j

)

j→a

×
∏

b∈∂i\c

∑

{σ
(1)
j

,σ
(2)
j

}

ν
(σ

(1)
i

,σ
(2)
i

)

b

∏

j∈∂b\i

dψ
(σ

(1)
j

,σ
(2)
j

)

j→b δ(pi→c −FRS) , (A27)

where the summation runs over all the configuration of (σ
(1)
j , σ

(2)
j ). µ

(σ
(1)
i

,σ
(2)
i

)
a (σ∂a\i) (resp. ν

(σ
(1)
i

,σ
(2)
i

)

b (σ∂b\i)) is the

probability of a satisfying spin assignment σ∂a\i (resp. σ∂b\i) for constraint a (resp. b) given the spin pair value

(σ
(1)
i , σ

(2)
i ) of the vertex i.

The grand free energy density g of this system can be represented by the grand free energy increase caused by

vertex i, constraint a and b. It has the following expression at m = 1:

g =
1

N

N
∑

i=1

∆Gi −
1

N

α1N
∑

a=1

(K − 1)∆Ga −
1

N

α2N
∑

b=1

(K − 1)∆Gb ,

e−y∆Gi =
∏

a∈∂i

∏

j∈∂a\i

∫

dpj→aψj→a(pj→a)
∏

b∈∂i

∏

j∈∂b\i

∫

dpj→bψj→b(pj→b) e−y∆Fi
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=
∑

σ
(1)

i

∑

σ
(2)

i

exp(xσ
(1)
i σ

(2)
i )

∏

a∈∂i

[

1 − δ
−Ji

a

σ
(1)
i

∏

j∈∂a\i

∑

σ

p̄j→a(−Jj
a, σ)

]

∏

b∈∂i

[

1 − δ
−Ji

b

σ
(2)
i

∏

j∈∂b\i

∑

σ

p̄j→b(σ,−J
j
b )

]

,

e−y∆Ga =

∫

dpj→aψj→a(pj→a) e−y∆Fa = 1 −
∏

j∈∂a

∑

σ

p̄j→a(−Jj
a , σ) ,

e−y∆Gb =

∫

dpj→bψj→b(pj→b) e−y∆Fb = 1 −
∏

j∈∂b

∑

σ

p̄j→b(σ,−J
j
b ) . (A28)

The mean free energy density f̄ is expressed as

f̄ =
1

N

N
∑

i=1

∆F i −
1

N

αAN
∑

a=1

(K − 1)∆Fa −
1

N

αBN
∑

b=1

(K − 1)∆Fb , (A29)

where ∆F i, ∆Fa and ∆Fb are respectively the mean free energy increase caused by vertex i, constraint a and b. ∆F i

has the following expression at m = 1:

β∆Fi = −

∫
∏

a∈∂i

∏

j∈∂a\i dψj→a

∏

b∈∂i

∏

j∈∂b\i dψj→bZi logZi
∫

∏

a∈∂i

∏

j∈∂a\i dψj→a

∏

b∈∂i

∏

j∈∂b\i dψj→bZi

,

Zi =
∑

σ
(1)
i

∑

σ
(2)
i

exσ
(1)

i
σ

(2)

i

∏

a∈∂i

∑

{σ
(1)
j

,σ
(2)
j

}

wa

∏

j∈∂a\i

pj→a

∏

b∈∂i

∑

{σ
(1)
j

,σ
(2)
j

}

wb

∏

j∈∂b\i

pj→b ,

where wa (resp. wb) takes the value 1 if a (resp. b) is satisfied otherwise equals 0. By inserting the conditional

probability Eq. (A27), it can be expressed as following:

β∆Fi = −
∑

σ
(1)

i

∑

σ
(2)

i

p̄i(σ
(1)
i , σ

(2)
i )

∫

∏

a∈∂i

∑

{σ
(1)

j
,σ

(2)

j
}

µ
(σ

(1)
i

,σ
(2)
i

)
a dψ

(σ
(1)
j

,σ
(2)
j

)

j→a

∏

b∈∂i

∑

{σ
(1)

j
,σ

(2)

j
}

ν
(σ

(1)
i

,σ
(2)
i

)

b dψ
(σ

(1)
j

,σ
(2)
j

)

j→b logZi .

Similarly,

β∆Fa =
∑

σ
(1)

∂a

∑

σ
(2)

∂a

µa(σ∂a)

∫

∏

j∈∂a

dψ
(σ

(1)
j

,σ
(2)
j

)

j→a logZa , β∆Fb =
∑

σ
(1)

∂b

∑

σ
(2)

∂b

νb(σ∂b)

∫

∏

j∈∂a

dψ
(σ

(1)
j

,σ
(2)
j

)

j→b logZb ,

where µa (resp. νb) is the probability of a satisfying spin assignment σ∂a (resp. σ∂b) for constraint a (resp. b) given

the spin pair value (σ
(1)
i , σ

(2)
i ) of the vertex i. The complexity Σ(m = 1) is related to g and f̄ , Σ(m = 1) = −yg + yf̄ .

Now all these quantities can be calculate by the distribution of p̄i→c and ψ
(σ

(1)

i
,σ

(2)

i
)

i→c (pi→c|p̄i→c) which can be regarded

as a just one-dimensional population.
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