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Distance, dissimilarity index, and network community structure
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We address the question of finding the community structure of a complex network. In an earliefH&ffort
Zhou, Phys. Rev. B7, 041908(2003], the concept of network random walking is introduced and a distance
measure defined. Here we calculate, based on this distance measure, the dissimilarity index between nearest-
neighboring vertices of a network and design an algorithm to partition these vertices into communities that are
hierarchically organized. Each community is characterized by an upper and a lower dissimilarity threshold. The
algorithm is applied to several artificial and real-world networks, and excellent results are obtained. In the case
of artificially generated random modular networks, this method outperforms the algorithm based on the concept
of edge betweenness centrality. For yeast’s protein-protein interaction network, we are able to identify many
clusters that have well defined biological functions.
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I. INTRODUCTION some conventional methodld]. On the other hand, it does
not provide a parameter to quantify the differences between
A graph(network of vertices(node$ and edges is a use- communities; furthermore, the concept of edge betweenness
ful tool in describing the interactions between differentcentrality is most natural for unweighted networks.
agents of a complex system. For example, if we want to In Ref. [6] a Brownian particle is “introduced” into a
analyze protein-protein physical interactions in ye8st- network to “measure” the distances between vertices. In the
charomyces cerevisiagl], we would like to denote each present work, we extend the basic idea of R6f.by defin-
protein as a distinct vertex of a graph, and setup an edgmg, based on this distance matrix, a quantity called the dis-
between two vertices if the corresponding proteins have disimilarity index between nearest-neighboring vertices. The
rect physical interactions. Many such kinds of networks aralissimilarity index signifies to what extent two nearest-
constructed in sociological, biological, and technologicalneighboring vertices would like to be in the same commu-
fields, and they usually have very complicated connectiomity. A hierarchical algorithm is then worked out; it makes
patterns. What one needs is a method that is capable of clagse of information on the dissimilarity indices and decom-
sifying vertices of a complex network into different clusters pose a network into a hierarchical sequence of clusters. Each

(communities. If a network is appropriately decomposed of the communities is characterized by an upper and a lower
into a series of functional unit¢a) the structure of the net- gjssimilarity threshold.

work can be better understood and the relationship between The method, which could work on unweighted as well as

its different components will be cleal) the principal func-  \weighted networks, is applied to several artificial and real
tion of each cluster can be inferred from the functions of itshetworks, and very satisfying results are obtained. For the
members, ancc) possible functions for members of a cluster case of random modular networks, the present algorithm out-
can be suggested by comparing the functions of other menperforms the method of Girvan and Newmfa. When ap-
bers. Network clustering techniques are therefore very imp|ying the algorithm to the protein-protein interaction net-
portant in the emerging fields of bioinformatics and proteom-york of yeast, we are able to identify many protein clusters
ICS. that have well defined biological functions.

A good clustering method needs to satisfy two conditions: |n Sec. I, we review the distance measure of Ré&f.and
FiI’St, the inherent structure Of the netWOFk Should be re'define a d|SS|m||ar|ty index for each pair of nearest-
served; second, it should provide a quantified resolution paneighboring vertices. A dissimilarity-index-based hierarchi-
rameter to mark the significance of the clusters obtained ata| algorithm is outlined in Sec. II, and applied to two kinds

each level of the partitioning process. The global organizapf artificially generated networks and four real-world net-
tion of a network should all’eady be identified at low reSOIU'WorkS in Sec. IV. We conclude our work in Sec. V with a

tions and more and more fine structures emerge as the resolyrief discussion.
ing power is increased.

Many existing method$2,3] only take account of local
information of eac_:h vertex, such as number of nearest nelgh-“_ DISTANCE MEASURE AND DISSIMILARITY INDEX
bors shared with other vertices, number of vertex-
independent paths to other vertices, etc. Recently, Girvan and In the opinion of Flake, Lawrence, and Gilgg, a com-
Newman[4] suggested an elegant global algorithm that ex-munity in a (subgraph should satisfy the requirement that
tended the concept of vertex betweenness centrality of Fre@ach vertex’s total intracommunity interaction be stronger
man[5] also to edges. Their algorithm works iteratively by than the total interaction with other vertices in the
removing the current ed¢® of the highest degree of be- (subgraph. This turns out to be a very strong constraint. In
tweenness centrality. When applying to an ensemble of rarthis work, we weaken this condition and require only that a
dom modular networks, this algorithm greatly outperformsvertex should have stronger total interaction with other ver-
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tices of its own community than with vertices of any anothervertices is moved to the friends set that, according to the
community of the(subgraph. generalized adjacency matr has the strongest interaction
We consider a connected network Nfvertices andM with it. After this operation, vertices of the community are
edges. The network’s connection pattern is specified by thdistributed into a number of disjointed sétlkis number may
generalized adjacency matix We assume that the value of be unity).
each nonzero element of mati(say A;;) denotes the in- (4) Each vertex in a subcluster should have stronger in-
teraction strength between vertexand j. The distanced;; teraction with vertices within this subcluster than with verti-
from vertexi to vertexj is defined as the average number of ces of any another subcluster of this community. To fulfill
steps needed for a Brownian particle on this network tahis requirement, we perform a local adjustment process,
move from vertex to vertexj [6]. At each verteXsayk) the ~ move each of the vertices that fail to meet this requirement to
Brownian particle will jump in the next step to a nearest-the friends set that has the strongest total interaction with it.
neighboring vertex (say |) with probability P,  This adjustment process is performed simultaneously for all
=Ay /=N _Am. The distance matrix thus defined is asym-these unstable vertices and is repeated until no unstable ver-

metric(in generalg;; #d;;), and it is calculated by solviny ~ tices remains.

linear-algebra equatiori$]. (5) If vertices of the community remain together, the al-
Taking any vertex as the origin of the network, then the gorithm returns to steg3). If they are divided into two or
set{di;, ... dii—1,di;+1, - ...din} measures how far all more sets, then the community under processing is assigned

the other vertices are located from the origin. Therefore, it it lower dissimilarity threshold,,, equaling to the current
actually a perspective of the whole network with veriex value, and it is no longer considered. Each of the identified
being the viewpoint. Suppose verticesand j are nearest Subsets of this community is regarded as a liewer-leve)
neighbors A;>0), the difference in their perspectives community, with upper dissimilarity thresholt},,, equaling
about the network can be quantitatively measured. We defin® the currentd value. The algorithm returns to step) to

the dissimilarity indexA (i,j) by the following expression: ~ work with another identified community.
(6) After all the (subcommunities are processed, a den-

/ % G d T2 drogram is drawn to demonstrate the relationship between
K [dik—dji] different communities as well as the upper and lower dis-
(1) similarity thresholds of each community. The vertex set of
(N=2) each community is also reported.
) ) . ) The above procedure could be easily implemented with
If two nearest-neighboring verticésandj belong to the . | nrogramming language. The source code as well as the

same community, then the average distasigdromi to any a4 for the examples studied in the following section will be
another vertex (k+#1i,j) will be quite similar to the average ,59e publicly availablgs].

distancedj, fromj to k, therefore the network’s two perspec-
tives (based on andj, respectively will be quite similar.
ConsequentlyA (i,j) will be small if i andj belong to the IV. APPLICATIONS
same community and large if they belong to different com-
munities.

AdiLj)=

We test the performance of the above-mentioned algo-
rithm by applying it first to two kinds of artificial networks
lIl. THE ALGORITHM and to three real-world networks.

We exploit the dissimilarity index to decipher the commu-
nity structure of a network. After the distance matfok; } A. Artificial random modular networks
and the dissimilarity indices for all the nearest-neighboring

vertices{A(i,j)} are obtained, the algorithm works as fol- \aywman [4], the algorithm is first applied to a random

Iowi. Initially the whol work is iust inal modular network. The network has 128 nodes, which are
. @) nitially the whole network 1S Just one single Commu- 464 into four modules of size 32 each. Each vertex has,
hiy. This community is assigned an upper dISSImIIarItyon average, 16 edges connecting to other vertices, and on

thresholdé,,,, equaling to the maximum value of all the dif- — , .
ferent dissimilarity indices. averagez,,; of each vertex's edges are connected to vertices
(2) For each community, a resolution threshold parameteP Otheér modules. All the edges are setup randomly with
these two fixed expectation values. The present method is

¢ is introduced and is assigned the initial val@g,, of that bl n aul f th K
community. The algorithm is unable to discriminate betweerfP'€ 10 recover the modular structure of the network up to

two nearest-neighboring verticesindj whenA(i,j)<@; if ~ Zou=7. It slightly outperforms the method of Girvan and
this happens, verticesandj are marked as “friends.” Newman([4] in performance. For example, working on an
(3) The 6 value is decreased differentially. All edges in ensemble of random graphs wity ,=6.0 by the present

the community are examined to see whether two nearesthethod, on an average only 4.5 vertices are misclassified,
neighboring vertices are friends. Different friends sets of theesach of which is assigned a cluster identity different from
community are then formed, each of which contains all thehose of the majority of vertices of its module; while on an
friends of the vertices in the set. There may also be verticeaverage about 13 vertices are misclassified by the method of
in the community that do not have any friends. Each of thes&sirvan and Newmai4].

To quantitatively compare with the work of Girvan and
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with size 32, 32, and 64, respectively. The first two commu-

nities correspond to two modules of the network, and the last
one is the combination of the other two modules. At resolu-

tion threshold 0.319, this later community again is divided

into two subcommunities of 32 vertices each, corresponding
to the remaining two modules. At resolution threshold 0.258,

one of the modules of the network is found to fission into

two subgroups of size 14 and 18, respectively. In this ex-
ample, the designed four modules of the network correspond
to the resolution range from 0.258 to 0.319.

How to interpret the resolution parameters in the dendro-
grams such as that shown in Fig. 1? Take module 2 and
module 3 as examples. Figure 1 suggests that edges between
these two modules have dissimilarity indices larger than
0.323, while edges within these modules have dissimilarity
indices=0.227. Therefore there is a large dissimilarity gap
of about 0.1 between an intermodular edge and an intra-
modular edge.

It is noticeable that by the present algorithm, each com-
munity has certain range of stability. Subcommunities
emerge only when the resolution threshold is lowered below
certain level, and they emerge abruptly.
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B. Regular hierarchy networks
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We analyze here the community structure of the model
hierarchy network studied by Ravasz and co-worKe&k
The network is constructed by several st¢pk At level n
=0, a fully connected unit of four vertices is generated. At
level n=1, three replicas of this unit are added and the ex-
ternal vertices of these replicas are connected to the central
vertex of then=0 unit, while the central vertices of the
replicas are connected to each other. This replication-
connection process could be continued to any desired tevel
In Fig. 2(a) such a network at levai=2 is shown. It was
remarked[3] that conventional network clustering methods
are unable to uncover the hierarchical structure of such a
network. The present method, however, works very well,
Fig. 2b) demonstrates the obtained community structure of
the network in Fig. £a). The hierarchy organization of the
vertices in the network is largely reserved in Figb)2 At
resolution threshold 1.95, the network is divided into four
subgroups of size 3 and a giant component of size 62. Later
at resolution threshold 1.89, this giant component again is
. ' : ' fissioned into two parts: one part has size 12 and is further
0.35 0.3 0.25 0.2 o ) ) .
resolution divided into three subgrogps of size 4 at resolut|_on threshold
FIG. 1. The community structure of a random modular networkL-22; the other part has size 50, which at resolution threshold

of 128 vertices and 1067 unweighted edgese the main text for 1.53 further decc_)mposes into th'jee subgroups of size 13, 13,
the rules how such a network is generatddere and in following ~@nd 14, respectively. At resolution threshold 0.91, each of
figures, in the pattermx-yy, the numberyy after the hyphen de- these three subgroups is further divided into three subgroups.
notes the group identity of vertexx according to information from

other sources. C. The karate club network

) _ The karate club datf9] examined in Refs[4,6] is re-

In Fig. 1, the community structure of a randomly gener-eyaluated here. This network is weighted, each edge is as-
ated modular network witla, = 6.0 is demonstrated. When signed a different strength. The present algorithm leads to the
the resolution threshold is beyond 0.323, the network as aommunity structure of Fig. 3. At resolution threshold 1.67,
whole could be regarded as a giant community. At resolutiorthe network decomposes into one small comporeot five
threshold 0.323, however, three subgroups suddenly emergegrtices and a large component of 29 vertices. At resolution
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FIG. 2. A hierarchy network3] at leveln=2 (a) and its community structuréb).

threshold 0.87, this large component further decomposes intgroups. Vertex 59 is classified together with members of

two subgroups, one of which has 11 memb@s and the group 9, we have also checked that it has stronger interac-
other has 18 member<]. Comparison with the actual fis- tion with group 9 than with any another group.

sion pattern is also shown in Fig. 3. According to Fita)of The organization of the different teams suggested by the
Ref. [6], the connection pattern of the three components igresent algorithm seems to be even better than the original
linear with A—B—C (there is no edges betweénandC). organization.

The algorithm of Ref[4] first cuts edges betwedhandC,

and then cuts edges betwearandB; in Fig. 3 this order is

. E. The scientific collaboration network
reversed. When several components are linearly connected,

their hierarchical organization may be a little bit arbitrary. ~ The scientific collaboration network compiled by Girvan
and Newmar{4] and examined in Refg4,6] is also reex-
D. The football team network amined. This network is also weightégee Fig. $a)]. The

present method suggests a community structure shown in
S . . . Fig. 5b). In accordance with the actual situation, on the

n]rzg([;:]]t a;ggtﬁgu ddIrz(ilIJIIWtsRiif%:éGJ:gsmrfr:ExiStgﬁec(tjurgroef. I':Fihe 4global scale, the network clearly has three giant communities
P y 9- %o comparable sizes. Each of these giant communities could

anh vertex's actual group |Qent|ty is also shown for COM¢ rther be decomposed into several subcommunities when
parison. In the resolution region between 0.41 and 0.64 ther,

are 12 communities according to the present algorithm. Oﬁﬁe resolving power is increased.
the 12 actual groups, only members from group 12 are dis-
tributed to other groupéwith good reasons, because actually
there are very few direct interactions between the five mem- The protein interaction network of yeast is constructed
bers of this cluster Vertex 111 are classified together with based on the data reported in Rg¢fs0,11], it contains 1471
members of group 11, we have checked that this vertex hgsroteins and 2770 edgggrotein-protein physical interac-
eight edges linking to group 11 and only three edges to othetions). This network has already been studied in Réf;

The football team network compiled by Girvan and New-

F. The protein interaction network of yeast
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here we constructed a reduced interaction network based on
the original one. First, self-connection is removed; second,

proteins that are connected to the network by only one edge
are removed. The second step is continued until no proteins
of degree one remain. The reason to remove all the proteins
of degree one is that, according to the idea of Girvan and

Newman[4], a vertex that is connected to the network by 1
just one edge should be in the same community as its

nearest-neighboring vertex, therefore its status need not to be
considered separately. Of course, we have checked that actu-
ally identical results are obtained when the network- -
reduction process is not performed. The reduced network

contains 871 proteins and 2043 unweighted interactions
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(edges.
The community structure of this network is demonstrated 1'0 0'5 O'
in Fig. 6. It seems to be strikingly different from those of the ' resolution

other networks studied in this paper. At the resolution range F|G. 4. The community structure of the football network of
between~ 1.5 and 18.0 many small communities appear, buGirvan and Newmai4].

the network is dominated by just one large cluster of size

proportional to the total size of the network. This is in accor- Based on the community structure shown in Fig. 6, we
dance with Ref[6] where the original network was decom- can construct clusters of proteins that might be of biological
posed into one large component and several small compgaignificance. For the purpose of demonstration, here we
nents. When the resolution threshold is decreased below 1.Show three examples of such protein clusters, corresponding,
the largest cluster is divided into several subclusters of comrespectively, to higher, medial, and lower resolution thresh-
parable sizes. The biological significance of such a commuelds.

nity structure is yet to be investigated. The first example is a cluster that appears at resolution
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FIG. 5. (Color online The scientific collaboration netwoila) compiled by Girvan and Newmdd] and its community structurg). In

(a) the different communities emerging at resolution threshold 4.0 are demonstrated.
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resolution

FIG. 6. The community structure of the reduced protein-protein

. . YILO38C
interaction network of yeast.

YDL165W YER068W

YFL028C

threshold 18.04. It contains 16 proteins and 33 edges, and
has the structure shown in Fig(aJ. This cluster is stable,
namely, that each vertex in it is more connected to vertices i
this cluster than to vertices outside; and it has no further

subcommunity structure. According to the protein interactiony FR036W, YHR166C, YKL022C are known to be cell divi-
databank[10,12, 15 of these proteins are all involved in sion control proteins; YGL240W plays a role in cell cycle
adenosine triphosphatéATP) synthesis process in yeast. and mitosis; YDR118W, YNL172W, YOR249C probably are

They may form a very important part of yeast's mitochon-membrane proteins; and YLR127C, YDLOO8W, YLR102C
drial ATPase complex. One protein of this cluster, YIL124W, oo pynothetical proteins whose functions remain to be de-
is a hypothetical membrane protein. Because this last protei

has only one interaction with other members of the cluster, iﬂarmined. It ?S quite IiI_<er that_a_ll _the proteins in this cI_ust_er
may not have similar biological functions as the other mem-are closely involved in cell division and membrane fission
bers. process. We anticipate that the three hypothetical proteins of

The second example is a cluster that appears at resolutighis cluster will also have similar biological functions.
threshold 5.11. It contains 11 proteins and 38 edges, and has The third example is a cluster that appears only when the
the structure shown in Fig.(d). This cluster is also stable resolution threshold is refined to below 0.88. It contains 14
and has no further structure. According to the protein interproteins and 41 protein-protein interactions. This cluster is
action databankl0,12), among these 11 proteins, YBL084C, also stable and has no further structure. The interaction pat-

FIG. 7. Examples of proteins clusters identified according to the
gommunity structure of Fig. 6.
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tern of this cluster is demonstrated in Figc)7 Among these Brownian particle takes to move from one vertex to the
14 proteins, according to the protein interaction databanither. Based on this distance measure, in the present work,
[10,12, YCRO093W, YPRO72W, YDL165W, YERO068W, We define a dissimilarity index to signify to what extent two
YILO38C are general negative regulator of transcription supn€arest-neighboring vertices will be different from each

units; YALO21C is a glucose-repressible alcohol dehydrogeOther- We observe that vertices belonging to the same group

nase transcriptional effector: YNR052C is a ubiquitous tran_usuaIIy have very small dissimilarity indices between them,
scription factor; YDR443C 'YGR104C are suppressors O1while vertices of different communities usually have large
RNA polymeras’eS' YNLO25C is the RNA polymerase Il ho- dissimilarity indices between them. The observation leads

o - . - naturally to an algorithm of network clustering. We applied
Ioen_zyme cyc.I|nI|I§e subunit, YPLO42C is th? MeiotmNA this method to several artificial networks and also to different
stability protein kinase UMES5; YGR092W is the cell cycle

T i real networks in social and biological systems and satisfac-
protein kinase DBF2; and YKRO36C and YFL028C are tWotory results are obtained. Different clusters of a network ob-

hypothetical proteins. It is quite likely that this cluster is (aineq py our method are characterized by a range of resolu-
mainly involved in RNA transcription process and we alsotion threshold.

anticipate that the two hypoth_etica_l protein; of this cluster 1o examples studied by us in this paper suggest that our
are strongly related with this biological function. algorithm is very promising in identifying the community
To conclude this section, we stress that based on the condycryre of a complex network system. Why it works?
munity structure of Fig. 6 many cl_usters_ of proteins can bel\/laybe it is because of the following reasons. First, the
constructed. Here, we have mentioned just three exampleGe ey vertex distance measure has taken into account the

Thgse ident.ified protejn clusters could help r‘?seamhefs tR)pological structure of the network as well as the local con-
assign possible biological functions to hypothetical proteinsyecfigns of the network. The distances from one vertex to all

and could also suggest possible proteins that may be ifpe gther vertices of the network actually give a perspective
volved in carrying out a particular biological reaction. of the whole network viewed from this vertex. Second, the

It should also be emphasized that the protein-protein ingisgimilarity index defined by Eq1) compares the perspec-
teraction network is based on high-throughput yeast tWogeq viewed from two nearest-neighboring vertices. It is in-

hybrid method$1]. There may be considerable false-positiveyiiyely appealing to assume that the perspectives of the
and false-negative effectéor a detailed discussion, please gitterent vertices of the same community are similar to each

refer to Ref. [13]). For example, in Fig. (& protein  qiher while those of vertices of different communities wil
YBLO99W has direct links with many other proteins of this quite different.

cluster, while according to the protein-protein interaction da-

tabase at Munich Information center for Protein Sequencegimjarity. There should be no real difficulty in plugging this
(MIPS) [14] only the link with YDR322C-A should_ be N" " metric in traditional hierarchical clustering algorithms to
cluded. The reason why YBLO99W appears as mteractln%reaﬂy improve their performance.

with others may be that most of the proteins in this commu-" |, ig anticipated that the present work will find applica-

pity belqng to. th? ATP synthase complex -and .therefqre the}’ions in the field of complex networks, as well as in the fields
interact in an indirect wayand lead to positive signals in the sociological and biological sciences.

two-hybrid experimenis

In this paper, we have suggested a powerful metric of
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