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Distance, dissimilarity index, and network community structure

Haijun Zhou
Max-Planck-Institute of Colloids and Interfaces, D-14424 Potsdam, Germany

~Received 13 February 2003; published 10 June 2003!

We address the question of finding the community structure of a complex network. In an earlier effort@H.
Zhou, Phys. Rev. E67, 041908~2003!#, the concept of network random walking is introduced and a distance
measure defined. Here we calculate, based on this distance measure, the dissimilarity index between nearest-
neighboring vertices of a network and design an algorithm to partition these vertices into communities that are
hierarchically organized. Each community is characterized by an upper and a lower dissimilarity threshold. The
algorithm is applied to several artificial and real-world networks, and excellent results are obtained. In the case
of artificially generated random modular networks, this method outperforms the algorithm based on the concept
of edge betweenness centrality. For yeast’s protein-protein interaction network, we are able to identify many
clusters that have well defined biological functions.

DOI: 10.1103/PhysRevE.67.061901 PACS number~s!: 87.10.1e, 89.75.2k, 89.20.2a
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I. INTRODUCTION

A graph~network! of vertices~nodes! and edges is a use
ful tool in describing the interactions between differe
agents of a complex system. For example, if we want
analyze protein-protein physical interactions in yeastSac-
charomyces cerevisiae@1#, we would like to denote each
protein as a distinct vertex of a graph, and setup an e
between two vertices if the corresponding proteins have
rect physical interactions. Many such kinds of networks
constructed in sociological, biological, and technologi
fields, and they usually have very complicated connect
patterns. What one needs is a method that is capable of
sifying vertices of a complex network into different cluste
~communities!. If a network is appropriately decompose
into a series of functional units,~a! the structure of the net
work can be better understood and the relationship betw
its different components will be clear,~b! the principal func-
tion of each cluster can be inferred from the functions of
members, and~c! possible functions for members of a clust
can be suggested by comparing the functions of other m
bers. Network clustering techniques are therefore very
portant in the emerging fields of bioinformatics and proteo
ics.

A good clustering method needs to satisfy two conditio
First, the inherent structure of the network should be
served; second, it should provide a quantified resolution
rameter to mark the significance of the clusters obtaine
each level of the partitioning process. The global organi
tion of a network should already be identified at low reso
tions and more and more fine structures emerge as the re
ing power is increased.

Many existing methods@2,3# only take account of loca
information of each vertex, such as number of nearest ne
bors shared with other vertices, number of verte
independent paths to other vertices, etc. Recently, Girvan
Newman@4# suggested an elegant global algorithm that
tended the concept of vertex betweenness centrality of F
man @5# also to edges. Their algorithm works iteratively b
removing the current edge~s! of the highest degree of be
tweenness centrality. When applying to an ensemble of
dom modular networks, this algorithm greatly outperform
1063-651X/2003/67~6!/061901~8!/$20.00 67 0619
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some conventional methods@4#. On the other hand, it doe
not provide a parameter to quantify the differences betw
communities; furthermore, the concept of edge betweenn
centrality is most natural for unweighted networks.

In Ref. @6# a Brownian particle is ‘‘introduced’’ into a
network to ‘‘measure’’ the distances between vertices. In
present work, we extend the basic idea of Ref.@6# by defin-
ing, based on this distance matrix, a quantity called the
similarity index between nearest-neighboring vertices. T
dissimilarity index signifies to what extent two neare
neighboring vertices would like to be in the same comm
nity. A hierarchical algorithm is then worked out; it make
use of information on the dissimilarity indices and deco
pose a network into a hierarchical sequence of clusters. E
of the communities is characterized by an upper and a lo
dissimilarity threshold.

The method, which could work on unweighted as well
weighted networks, is applied to several artificial and r
networks, and very satisfying results are obtained. For
case of random modular networks, the present algorithm
performs the method of Girvan and Newman@4#. When ap-
plying the algorithm to the protein-protein interaction ne
work of yeast, we are able to identify many protein cluste
that have well defined biological functions.

In Sec. II, we review the distance measure of Ref.@6# and
define a dissimilarity index for each pair of neare
neighboring vertices. A dissimilarity-index-based hierarc
cal algorithm is outlined in Sec. III, and applied to two kind
of artificially generated networks and four real-world ne
works in Sec. IV. We conclude our work in Sec. V with
brief discussion.

II. DISTANCE MEASURE AND DISSIMILARITY INDEX

In the opinion of Flake, Lawrence, and Giles@7#, a com-
munity in a ~sub!graph should satisfy the requirement th
each vertex’s total intracommunity interaction be strong
than the total interaction with other vertices in th
~sub!graph. This turns out to be a very strong constraint.
this work, we weaken this condition and require only tha
vertex should have stronger total interaction with other v
©2003 The American Physical Society01-1
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tices of its own community than with vertices of any anoth
community of the~sub!graph.

We consider a connected network ofN vertices andM
edges. The network’s connection pattern is specified by
generalized adjacency matrixA. We assume that the value o
each nonzero element of matrixA ~sayAi j ) denotes the in-
teraction strength between vertexi and j. The distancedi j
from vertexi to vertexj is defined as the average number
steps needed for a Brownian particle on this network
move from vertexi to vertexj @6#. At each vertex~sayk) the
Brownian particle will jump in the next step to a neare
neighboring vertex ~say l ) with probability Pkl

5Akl /(m51
N Akm . The distance matrix thus defined is asym

metric~in general,di j Þdji ), and it is calculated by solvingN
linear-algebra equations@6#.

Taking any vertexi as the origin of the network, then th
set $di1 , . . . ,di ,i 21 ,di ,i 11 , . . . ,diN% measures how far al
the other vertices are located from the origin. Therefore,
actually a perspective of the whole network with vertexi
being the viewpoint. Suppose verticesi and j are nearest
neighbors (Ai j .0), the difference in their perspective
about the network can be quantitatively measured. We de
the dissimilarity indexL( i , j ) by the following expression:

L~ i , j !5

A(
kÞ i , j

N

@dik2djk#2

~N22!
. ~1!

If two nearest-neighboring verticesi and j belong to the
same community, then the average distancedik from i to any
another vertexk (kÞ i , j ) will be quite similar to the average
distancedjk from j to k, therefore the network’s two perspe
tives ~based oni and j, respectively! will be quite similar.
Consequently,L( i , j ) will be small if i and j belong to the
same community and large if they belong to different co
munities.

III. THE ALGORITHM

We exploit the dissimilarity index to decipher the comm
nity structure of a network. After the distance matrix$di j %
and the dissimilarity indices for all the nearest-neighbor
vertices$L( i , j )% are obtained, the algorithm works as fo
lows.

~1! Initially the whole network is just one single commu
nity. This community is assigned an upper dissimilar
thresholduupp equaling to the maximum value of all the di
ferent dissimilarity indices.

~2! For each community, a resolution threshold parame
u is introduced and is assigned the initial valueuupp of that
community. The algorithm is unable to discriminate betwe
two nearest-neighboring verticesi and j whenL( i , j )<u; if
this happens, verticesi and j are marked as ‘‘friends.’’

~3! The u value is decreased differentially. All edges
the community are examined to see whether two near
neighboring vertices are friends. Different friends sets of
community are then formed, each of which contains all
friends of the vertices in the set. There may also be vert
in the community that do not have any friends. Each of th
06190
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vertices is moved to the friends set that, according to
generalized adjacency matrixA, has the strongest interactio
with it. After this operation, vertices of the community a
distributed into a number of disjointed sets~this number may
be unity!.

~4! Each vertex in a subcluster should have stronger
teraction with vertices within this subcluster than with ver
ces of any another subcluster of this community. To ful
this requirement, we perform a local adjustment proce
move each of the vertices that fail to meet this requiremen
the friends set that has the strongest total interaction with
This adjustment process is performed simultaneously for
these unstable vertices and is repeated until no unstable
tices remains.

~5! If vertices of the community remain together, the a
gorithm returns to step~3!. If they are divided into two or
more sets, then the community under processing is assig
a lower dissimilarity thresholdu low equaling to the currentu
value, and it is no longer considered. Each of the identifi
subsets of this community is regarded as a new~lower-level!
community, with upper dissimilarity thresholduupp equaling
to the currentu value. The algorithm returns to step~2! to
work with another identified community.

~6! After all the ~sub!communities are processed, a de
drogram is drawn to demonstrate the relationship betw
different communities as well as the upper and lower d
similarity thresholds of each community. The vertex set
each community is also reported.

The above procedure could be easily implemented w
C11 programming language. The source code as well as
data for the examples studied in the following section will
made publicly available@8#.

IV. APPLICATIONS

We test the performance of the above-mentioned al
rithm by applying it first to two kinds of artificial networks
and to three real-world networks.

A. Artificial random modular networks

To quantitatively compare with the work of Girvan an
Newman @4#, the algorithm is first applied to a random
modular network. The network has 128 nodes, which
divided into four modules of size 32 each. Each vertex h
on average, 16 edges connecting to other vertices, and
averagez̄out of each vertex’s edges are connected to verti
of other modules. All the edges are setup randomly w
these two fixed expectation values. The present metho
able to recover the modular structure of the network up
z̄out.7. It slightly outperforms the method of Girvan an
Newman@4# in performance. For example, working on a
ensemble of random graphs withz̄out56.0 by the present
method, on an average only 4.5 vertices are misclassifi
each of which is assigned a cluster identity different fro
those of the majority of vertices of its module; while on a
average about 13 vertices are misclassified by the metho
Girvan and Newman@4#.
1-2
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DISTANCE, DISSIMILARITY INDEX, AND NETWORK . . . PHYSICAL REVIEW E67, 061901 ~2003!
In Fig. 1, the community structure of a randomly gen
ated modular network withz̄out56.0 is demonstrated. Whe
the resolution threshold is beyond 0.323, the network a
whole could be regarded as a giant community. At resolut
threshold 0.323, however, three subgroups suddenly eme

FIG. 1. The community structure of a random modular netw
of 128 vertices and 1067 unweighted edges~see the main text for
the rules how such a network is generated!. Here and in following
figures, in the patternxx-yy, the numberyy after the hyphen de-
notes the group identity of vertexxx according to information from
other sources.
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with size 32, 32, and 64, respectively. The first two comm
nities correspond to two modules of the network, and the
one is the combination of the other two modules. At reso
tion threshold 0.319, this later community again is divid
into two subcommunities of 32 vertices each, correspond
to the remaining two modules. At resolution threshold 0.25
one of the modules of the network is found to fission in
two subgroups of size 14 and 18, respectively. In this
ample, the designed four modules of the network corresp
to the resolution range from 0.258 to 0.319.

How to interpret the resolution parameters in the dend
grams such as that shown in Fig. 1? Take module 2
module 3 as examples. Figure 1 suggests that edges bet
these two modules have dissimilarity indices larger th
0.323, while edges within these modules have dissimila
indices.0.227. Therefore there is a large dissimilarity g
of about 0.1 between an intermodular edge and an in
modular edge.

It is noticeable that by the present algorithm, each co
munity has certain range of stability. Subcommuniti
emerge only when the resolution threshold is lowered be
certain level, and they emerge abruptly.

B. Regular hierarchy networks

We analyze here the community structure of the mo
hierarchy network studied by Ravasz and co-workers@3#.
The network is constructed by several steps@3#. At level n
50, a fully connected unit of four vertices is generated.
level n51, three replicas of this unit are added and the
ternal vertices of these replicas are connected to the ce
vertex of then50 unit, while the central vertices of th
replicas are connected to each other. This replicati
connection process could be continued to any desired levn.
In Fig. 2~a! such a network at leveln52 is shown. It was
remarked@3# that conventional network clustering metho
are unable to uncover the hierarchical structure of suc
network. The present method, however, works very w
Fig. 2~b! demonstrates the obtained community structure
the network in Fig. 2~a!. The hierarchy organization of th
vertices in the network is largely reserved in Fig. 2~b!. At
resolution threshold 1.95, the network is divided into fo
subgroups of size 3 and a giant component of size 62. L
at resolution threshold 1.89, this giant component again
fissioned into two parts: one part has size 12 and is furt
divided into three subgroups of size 4 at resolution thresh
1.52; the other part has size 50, which at resolution thresh
1.53 further decomposes into three subgroups of size 13,
and 14, respectively. At resolution threshold 0.91, each
these three subgroups is further divided into three subgro

C. The karate club network

The karate club data@9# examined in Refs.@4,6# is re-
evaluated here. This network is weighted, each edge is
signed a different strength. The present algorithm leads to
community structure of Fig. 3. At resolution threshold 1.6
the network decomposes into one small componentA of five
vertices and a large component of 29 vertices. At resolut

k

1-3
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FIG. 2. A hierarchy network@3# at leveln52 ~a! and its community structure~b!.
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threshold 0.87, this large component further decomposes
two subgroups, one of which has 11 members~B! and the
other has 18 members (C). Comparison with the actual fis
sion pattern is also shown in Fig. 3. According to Fig. 1~a! of
Ref. @6#, the connection pattern of the three components
linear with A2B2C ~there is no edges betweenA andC).
The algorithm of Ref.@4# first cuts edges betweenB andC,
and then cuts edges betweenA andB; in Fig. 3 this order is
reversed. When several components are linearly conne
their hierarchical organization may be a little bit arbitrary

D. The football team network

The football team network compiled by Girvan and Ne
man@4# and studied in Refs.@4,6# is reinvestigated here. Th
present method results in the community structure of Fig
Each vertex’s actual group identity is also shown for co
parison. In the resolution region between 0.41 and 0.64 th
are 12 communities according to the present algorithm.
the 12 actual groups, only members from group 12 are
tributed to other groups~with good reasons, because actua
there are very few direct interactions between the five me
bers of this cluster!. Vertex 111 are classified together wi
members of group 11, we have checked that this vertex
eight edges linking to group 11 and only three edges to o
06190
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groups. Vertex 59 is classified together with members
group 9, we have also checked that it has stronger inte
tion with group 9 than with any another group.

The organization of the different teams suggested by
present algorithm seems to be even better than the orig
organization.

E. The scientific collaboration network

The scientific collaboration network compiled by Girva
and Newman@4# and examined in Refs.@4,6# is also reex-
amined. This network is also weighted@see Fig. 5~a!#. The
present method suggests a community structure show
Fig. 5~b!. In accordance with the actual situation, on t
global scale, the network clearly has three giant communi
of comparable sizes. Each of these giant communities co
further be decomposed into several subcommunities w
the resolving power is increased.

F. The protein interaction network of yeast

The protein interaction network of yeast is construct
based on the data reported in Refs.@10,11#, it contains 1471
proteins and 2770 edges~protein-protein physical interac
tions!. This network has already been studied in Ref.@6#;
1-4
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DISTANCE, DISSIMILARITY INDEX, AND NETWORK . . . PHYSICAL REVIEW E67, 061901 ~2003!
here we constructed a reduced interaction network base
the original one. First, self-connection is removed; seco
proteins that are connected to the network by only one e
are removed. The second step is continued until no prot
of degree one remain. The reason to remove all the prot
of degree one is that, according to the idea of Girvan a
Newman@4#, a vertex that is connected to the network
just one edge should be in the same community as
nearest-neighboring vertex, therefore its status need not t
considered separately. Of course, we have checked that
ally identical results are obtained when the netwo
reduction process is not performed. The reduced netw
contains 871 proteins and 2043 unweighted interacti
~edges!.

The community structure of this network is demonstra
in Fig. 6. It seems to be strikingly different from those of t
other networks studied in this paper. At the resolution ran
between;1.5 and 18.0 many small communities appear,
the network is dominated by just one large cluster of s
proportional to the total size of the network. This is in acc
dance with Ref.@6# where the original network was decom
posed into one large component and several small com
nents. When the resolution threshold is decreased below
the largest cluster is divided into several subclusters of c
parable sizes. The biological significance of such a comm
nity structure is yet to be investigated.

FIG. 3. The community structure of the karate club network
Zachary@9#.
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Based on the community structure shown in Fig. 6,
can construct clusters of proteins that might be of biologi
significance. For the purpose of demonstration, here
show three examples of such protein clusters, correspond
respectively, to higher, medial, and lower resolution thre
olds.

The first example is a cluster that appears at resolu

f

FIG. 4. The community structure of the football network
Girvan and Newman@4#.
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FIG. 5. ~Color online! The scientific collaboration network~a! compiled by Girvan and Newman@4# and its community structure~b!. In
~a! the different communities emerging at resolution threshold 4.0 are demonstrated.
061901-6
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DISTANCE, DISSIMILARITY INDEX, AND NETWORK . . . PHYSICAL REVIEW E67, 061901 ~2003!
threshold 18.04. It contains 16 proteins and 33 edges,
has the structure shown in Fig. 7~a!. This cluster is stable
namely, that each vertex in it is more connected to vertice
this cluster than to vertices outside; and it has no furt
subcommunity structure. According to the protein interact
databank@10,12#, 15 of these proteins are all involved i
adenosine triphosphate~ATP! synthesis process in yeas
They may form a very important part of yeast’s mitocho
drial ATPase complex. One protein of this cluster, YIL124
is a hypothetical membrane protein. Because this last pro
has only one interaction with other members of the cluste
may not have similar biological functions as the other me
bers.

The second example is a cluster that appears at resolu
threshold 5.11. It contains 11 proteins and 38 edges, and
the structure shown in Fig. 7~b!. This cluster is also stable
and has no further structure. According to the protein in
action databank@10,12#, among these 11 proteins, YBL084C

FIG. 6. The community structure of the reduced protein-prot
interaction network of yeast.
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YFR036W, YHR166C, YKL022C are known to be cell div
sion control proteins; YGL240W plays a role in cell cyc
and mitosis; YDR118W, YNL172W, YOR249C probably a
membrane proteins; and YLR127C, YDL008W, YLR102
are hypothetical proteins whose functions remain to be
termined. It is quite likely that all the proteins in this clust
are closely involved in cell division and membrane fissi
process. We anticipate that the three hypothetical protein
this cluster will also have similar biological functions.

The third example is a cluster that appears only when
resolution threshold is refined to below 0.88. It contains
proteins and 41 protein-protein interactions. This cluste
also stable and has no further structure. The interaction

n

FIG. 7. Examples of proteins clusters identified according to
community structure of Fig. 6.
1-7
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HAIJUN ZHOU PHYSICAL REVIEW E67, 061901 ~2003!
tern of this cluster is demonstrated in Fig. 7~c!. Among these
14 proteins, according to the protein interaction datab
@10,12#, YCR093W, YPR072W, YDL165W, YER068W
YIL038C are general negative regulator of transcription s
units; YAL021C is a glucose-repressible alcohol dehydro
nase transcriptional effector; YNR052C is a ubiquitous tr
scription factor; YDR443C, YGR104C are suppressors
RNA polymerases; YNL025C is the RNA polymerase II h
loenzyme cyclinlike subunit; YPL042C is the meioticmRNA
stability protein kinase UME5; YGR092W is the cell cyc
protein kinase DBF2; and YKR036C and YFL028C are tw
hypothetical proteins. It is quite likely that this cluster
mainly involved in RNA transcription process and we al
anticipate that the two hypothetical proteins of this clus
are strongly related with this biological function.

To conclude this section, we stress that based on the c
munity structure of Fig. 6 many clusters of proteins can
constructed. Here, we have mentioned just three examp
These identified protein clusters could help researcher
assign possible biological functions to hypothetical protei
and could also suggest possible proteins that may be
volved in carrying out a particular biological reaction.

It should also be emphasized that the protein-protein
teraction network is based on high-throughput yeast tw
hybrid methods@1#. There may be considerable false-positi
and false-negative effects~for a detailed discussion, pleas
refer to Ref. @13#!. For example, in Fig. 7~a! protein
YBL099W has direct links with many other proteins of th
cluster, while according to the protein-protein interaction d
tabase at Munich Information center for Protein Sequen
~MIPS! @14# only the link with YDR322C-A should be in-
cluded. The reason why YBL099W appears as interac
with others may be that most of the proteins in this comm
nity belong to the ATP synthase complex and therefore t
interact in an indirect way~and lead to positive signals in th
two-hybrid experiments!.

V. CONCLUSION AND DISCUSSION

In our earlier work@6#, the distance between two vertice
of a graph is defined as the average number of step
s
e,

L.
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er

-
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Brownian particle takes to move from one vertex to t
other. Based on this distance measure, in the present w
we define a dissimilarity index to signify to what extent tw
nearest-neighboring vertices will be different from ea
other. We observe that vertices belonging to the same gr
usually have very small dissimilarity indices between the
while vertices of different communities usually have lar
dissimilarity indices between them. The observation lea
naturally to an algorithm of network clustering. We applie
this method to several artificial networks and also to differ
real networks in social and biological systems and satis
tory results are obtained. Different clusters of a network o
tained by our method are characterized by a range of res
tion threshold.

The examples studied by us in this paper suggest that
algorithm is very promising in identifying the communit
structure of a complex network system. Why it work
Maybe it is because of the following reasons. First, t
vertex-vertex distance measure has taken into account
topological structure of the network as well as the local co
nections of the network. The distances from one vertex to
the other vertices of the network actually give a perspec
of the whole network viewed from this vertex. Second, t
dissimilarity index defined by Eq.~1! compares the perspec
tives viewed from two nearest-neighboring vertices. It is
tuitively appealing to assume that the perspectives of
different vertices of the same community are similar to ea
other, while those of vertices of different communities w
be quite different.

In this paper, we have suggested a powerful metric
similarity. There should be no real difficulty in plugging th
metric in traditional hierarchical clustering algorithms
greatly improve their performance.

It is anticipated that the present work will find applic
tions in the field of complex networks, as well as in the fiel
of sociological and biological sciences.
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