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Long-Range Frustration in a Spin-Glass Model of the Vertex-Cover Problem
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In a spin-glass system on a random graph, some vertices have their spins changing among different
configurations of a ground-state domain. Long-range frustrations may exist among these unfrozen vertices
in the sense that certain combinations of spin values for these vertices may never appear in any
configuration of this domain. We present a mean field theory to tackle such long-range frustrations and
apply it to the NP-hard minimum vertex-cover (hard-core gas condensation) problem. Our analytical
results on the ground-state energy density and on the fraction of frozen vertices are in good agreement
with known numerical and mathematical results.
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The energy landscape of a large spin-glass system is
very complex. There may exist (exponentially) many
ground-state and metastable domains in the configurational
space; these domains are mutually separated from each
other by (infinitely) high energy barriers. At low tempera-
ture, the system may get trapped in one of these configura-
tional domains, and ergodicity is broken. In the cavity field
formalism [1] of mean field theory of finite connectivity
spin glasses [2– 4], microscopic configurations of a system
are therefore grouped into different macroscopic states
(hereafter, a macroscopic state is simply referred to as a
‘‘state’’ and a microscopic configuration as a ‘‘configura-
tion’’). In a given state each vertex i feels a cavity field hi
that may be different for different vertices, and the fluc-
tuation of this field among all the states is characterized by
a probability distribution Pi�hi� that again may be different
for different vertices.

The ground-state energy landscape of a spin-glass sys-
tem can be studied by the zero temperature limit of the
cavity field theory [5]. In this limit and in a given state �,
the spin value �i of a vertex i either is positively frozen
(�i � �1 in all configurations) or is negatively frozen
(�i � �1) or is unfrozen (�i fluctuates over �1 among
configurations of state �). A crucial assumption of the
cavity field theory [1,5] is that, with probability unity,
each of the 2n combinations of spin values for n randomly
chosen unfrozen vertices is realized in configurations of
state �. However, this conventional cavity field theory
leads to negative values of structural entropy � [5] when
loops of spin-spin interactions become abundant (see, e.g.,
[6–10]) or even causes a certain type of divergence in the
population dynamics [7,11]. To overcome these difficul-
ties, a positive reweighting parameter y can be introduced,
and its value can be determined self-consistently by requir-
ing ��y� � 0 [5]. This procedure is, however, not quite
satisfactory; in case of the vertex-cover problem, it predicts
a ground-state energy that is systematically lower than the
actual value [9].

Here we discuss the possibility of long-range correla-
tions among spins of different unfrozen vertices. Both the
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spins of two unfrozen vertices i and j will certainly fluc-
tuate among configurations of a state �. On the other hand,
we find that with certain probability �i and �j may be
prohibited to take a certain combination of values (e.g.,
�i � �j � �1) in all configurations of state �, even if i
and j are far apart from each other in terms of the shortest
path length. To detect such long-range frustrations among
unfrozen vertices, our idea is to flip the spin of one un-
frozen vertex and then check whether this perturbation
propagates to other unfrozen ones. This Letter reports
our calculations on a spin-glass model [9] of the NP-hard
minimum vertex-cover problem [12–15], which is equiva-
lent to the hard-core gas condensation of physics [16]. A
long-range frustration order parameter R is defined. In this
model the quenched randomness comes from the under-
lying random graph. Work on systems with additional
quenched randomness of spin-spin interactions is reported
in an accompanying paper [11].

For the vertex-cover model, we show that long-range
frustration builds up (R> 0) when the mean vertex degree
c of the graph exceeds c � e � 2:7183. Analytical predic-
tions on the ground-state energy density and on the fraction
of frozen vertices are both in very good agreement with
known numerical and mathematical results. The calcula-
tions are carried out through the cavity approach. It re-
mains open whether the same results are achievable by the
replica method. Our approach is essentially replica sym-
metric in the sense that (a) we focus attention on just one of
all possible macroscopic states, and (b) the statistical prop-
erty of this state is specified by just three mean field
parameters to be defined, R, q�, and q0. Competitions
among multiple states will be included in the theory in
future work.

We first introduce the random graph vertex-cover prob-
lem. A random graph G�N; c� has N vertices, and between
any two vertices an edge is present with probability
c=�N � 1�. The average number of edges incident to a
vertex is c (the mean vertex degree). For large graph size
N, a vertex’s probability of having k edges is given by the
Poisson distribution Pc�k� � e�cck=k!. Denote E�G� as the
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edge set of graph G. A vertex cover of G consists of a set of
vertices 	 � fi1; i2; . . . ; img such that if edge �i; j� 2 E�G�,
then either i 2 	 or j 2 	 or both. The vertex-cover
problem consists of finding a vertex cover 	 with size
j	j � n0, n0 being a prescribed integer. This problem is
mapped to a spin-glass model with energy functional

E
f�ig� � �
XN

i�1

�i �
X

�i;j�2E�G�

�1� �i��1� �j�: (1)

�i � �1 if vertex i 2 	 (covered) and �i � �1
otherwise.

The ground-state configurations of model (1) correspond
to vertex-cover patterns with the global minimum size
[9]. These configurations may be grouped into different
states [5]. Two configurations in the same state are mu-
tually reachable by flipping a finite number of spins in
one configuration and then letting the system relax.
(According to this definition of states, two configurations
of the same state can have a Hamming distance scaling
linearly with system size N.) Let us focus on one state,
say, �. In state �, the spin value of a randomly chosen
vertex i may be fixed to �i � �1, or to �i � �1, or
fluctuate over �1. The fraction of positively frozen, nega-
tively frozen, and unfrozen vertices in state � is q�, q�,
and q0, respectively. [By the way, we notice that in the
minimum vertex-cover problem, the parameters
(q�; q�; q0) are the same for different ground-state states,
due to the fact that the energy density is determined
by Eq. (6).] The probability that, among k vertices
that are randomly picked up from G�N; c�, k0 are unfrozen,
k� positively frozen, and k� (� k� k0 � k�) negatively
frozen is k!=�k0!k�!k�!�q

k0
0 q

k�
� qk�� (in the large N limit).

Since the spin of an unfrozen vertex i fluctuates among
different configurations of state �, the ‘‘correlation length’’
of this fluctuation is an important issue. We ask the follow-
ing question: If �i is externally fixed to �i � �1, how
many other unfrozen vertices must eventually fix their
spins as a consequence?

For a random graph of size N ! 1, the total number s of
affected vertices may scale linearly with N. If this happens,
vertex i is referred to as type-I unfrozen. The probability
for this to happen is denoted as R (which defines our long-
range frustration order parameter). The total number of
affected vertices may also be finite. In this case, vertex i is
type-II unfrozen. Based on insights gained from studies on
random graphs [17], we know that the percolation clusters
evoked by two type-I unfrozen vertices have a nonzero
intersection (of size proportional to N). Therefore, the spin
values of all the type-I unfrozen vertices must be strongly
correlated. If we randomly choose two type-I unfrozen
vertices i and j, then with probability one-half their spin
values cannot be negative simultaneously: if �i � �1,
then �j must be �1; if �j � �1, then �i must be �1.
On the other hand, two randomly chosen type-II unfrozen
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vertices are mutually independent, since each vertex can
influence only the spin values of s�O�1� other unfrozen
vertices while the shortest path length between two ran-
domly chosen vertices of G�N; c� scales as lnN and be-
comes divergent when N ! 1 [17]. Denote f�s� as the
probability that a randomly chosen unfrozen vertex i, when
flipped to �i � �1, will eventually fix the spin values of s
unfrozen vertices with s being finite and therefore
limN!1s=N � 0.

We calculate the parameters q0, q�, q� by the cavity
field method [1,5]: First a random graph G�N; c� is gen-
erated, then a new vertex i is connected to a set Vi of k
randomly chosen vertices in G�N; c�, k following the dis-
tribution Pc�k�; the unfrozen or frozen probabilities
fq0�i�; q��i�; q��i�g of vertex i in the enlarged graph (de-
noted as G0) are then calculated. We assume the following
convergence condition: limN!1fq0�i�; q��i�; q��i�g �
fq0; q�; q�g. This enables us to write down a set of self-
consistent equations in the large N limit.

If the new vertex i is positively frozen, then none of the
vertices in Vi are positively frozen in graph G.
Furthermore, there are two possible situations: (i) no ver-
tices in Vi are type-I unfrozen in G, or (ii) some of the
vertices in Vi are type-I unfrozen. In case (ii), all these
type-I unfrozen vertices will take spin value �1 simulta-
neously in some configurations of state �, so that vertex i
will have �i � �1 as it is added into the system. With this
analysis, we get a self-consistent equation for q�:

q� �
X1

k�1

Pc�k�
Xk

l�1

Cl
k�q0R�

l
q0�1� R� � q��k�l21�l

�
X1

k�0

Pc�k�
q0�1� R� � q��
k

� 2e�cq���1=2�cq0R � e�cq��cq0R; (2)

where Cl
k � k!=�l!�k� l�!�. Equations (2)–(4) and (7) are

derived elsewhere [18].
If the new vertex i is unfrozen, there are also two

possibilities concerning the spin values of vertices in Vi:
(iii) none of them is positively frozen in G, or (iv) one of
them is positively frozen in G. To ensure vertex i will be
unfrozen, in situation (iii) two or more of the vertices in Vi
must be type-I unfrozen in G, among which one is in
conflict with all the others, and in situation (iv) some of
the vertices in Vi may be type-I unfrozen in G, but they
must be capable of taking spin value �1 simultaneously.
Therefore, we get a self-consistent equation for q0 [18]:

q0 � �2cq� � cq0R�e�cq���1=2�cq0R � 
cq� � cq0R

� �cq0R�
2=4�e�cq��cq0R: (3)

If the spin of an unfrozen vertex i is flipped to �i � �1,
it may not affect any other vertices (s � 0), provided
its local environment is described by the above-
mentioned situation (iii). This happens with probability
3-2



1

PRL 94, 217203 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
3 JUNE 2005
p1 � 1� cq2�=q0. With probability 1� p1, the unfrozen
vertex i encounters a local environment of type (iv); that is,
one of its nearest neighbors vertex j is positively frozen in
graph G. This vertex j must face the local environment of
type (i) in graph G if vertex i is type-II unfrozen. [If vertex
j has the local environment of type (ii), flipping the spin
value of vertex i to �i � �1 would cause a percolation
cluster of size proportional to N.] With these preparations,
we obtain the following self-consistent equation for the
distribution f�s� [18]:

f�s��p1�0
s��1�p1�

X

l�0

Pc0 �l�
X

fsmg

Yl

m

f�sm��
s1�����sl
s�1 : (4)

In Eq. (4), � is the Kronecker symbol, and c0 � cq0�1� R�
is the mean number of type-II unfrozen vertices adjacent to
a positively frozen vertex. Since R � 1� �1

s�0f�s�, we
establish that the long-range frustration order parameter
R is determined by the following equation:

R � �cq2�=q0��1� e�cq0R�1�R��: (5)

A positive R signifies the appearance of a percolation
cluster of unfrozen vertices whose spin values are strongly
correlated.

Figure 1 shows the value of R as a function of mean
vertex degree c. R � 0 when c � e; this is consistent with
Ref. [19] that, a minimal vertex-cover pattern can be found
by a polynomial leaf-removal algorithm. When c > e, a
finite fraction of the unfrozen vertices are long-range frus-
trated; the leaf-removal algorithm outputs a looped sub-
graph [19]. At mean vertex degree c ’ 40, the order
parameter R reaches a maximal value; then it gradually
decays as c is further increased.

The fraction of vertices that are covered in a minimal
vertex cover is [18]

Xmin � 1� q� � q0=2: (6)

Figure 2 shows the relationship between Xmin and mean
vertex degree c. At large c values, Eq. (6) is in agreement
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FIG. 1. The long-range frustration order parameter R.
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with a rigorous asymptotic expression given by Frieze
[20]; at low values of c, it is in agreement with the exact
enumeration results of Weigt and Hartmann [13]. These
excellent agreements are quite encouraging, in view of the
fact that all previous efforts failed [9,13,14]. It has already
been established that when c > e the replica symmetric
solution of the vertex-cover problem becomes unstable
[13,14], but earlier replica symmetry breaking solutions
either resulted in negative structural entropy or predicted a
minimal vertex-cover size noticeably lower than the actual
value [9].

So far we have focused on only one ground-state state of
the vertex-cover problem. When c > e, it is believed that
there are many such states (replica symmetry breaking).
This is consistent with our observation that, when c > e,
the fraction of frozen vertices ( � q� � q�, dashed lines in
Fig. 3) in one state is much higher than the actual fraction
of frozen vertices estimated numerically (symbols in
Fig. 3) [14]. This is easy to understand: A frozen vertex
in one state may be unfrozen or be frozen to the opposite
spin value in another state. At the moment we are unable to
construct a theory to include the competitions among
different states. As a first attempt, we make the following
conjectures: (a) if a vertex is positively frozen in one state,
it is positively frozen in all states, and (b) a vertex is
negatively frozen in all states only if it is adjacent to two
or more positively frozen vertices. Then an expression on
the fraction of frozen vertices is obtained [18]:

� � q� � 1� e�cq� � cq�e�cq� : (7)

The agreement of Eq. (7) with the numerical data of
Ref. [14] is quite good (Fig. 3). This is an issue to be
understood more deeply.

To summarize, we have studied long-range frustrations
among unfrozen vertices in a macroscopic state of a spin-
glass system. We found that, with certain probability, the
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FIG. 2 (color online). The minimal vertex-cover fraction Xmin

[Eq. (6), solid line] and its comparison with the asymptotic
formula of Ref. [20] (dashed line) and the numerical results of
Refs. [13] (symbols).
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FIG. 3 (color online). Fraction of frozen vertices in all macro-
scopic states [Eq. (7), solid lines] and its comparison with the
numerical results of Ref. [14] (symbols) and the fraction of
frozen vertices in one macroscopic state (dashed lines).
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fluctuations of the spin values of two or more distantly
separated unfrozen vertices are highly correlated. A long-
range frustration order parameter R was calculated to
quantify this strong correlation. When applying our
method to the NP-hard minimum vertex-cover (hard-core
gas condensation) problem, the analytical predictions con-
cerning the ground-state energy density and the fraction of
frozen vertices are in good agreement with known numeri-
cal and rigorous results. The basic idea behind this Letter is
also applicable to other spin-glass systems [11].

We emphasize that the appearance of many macroscopic
states in the energy landscape of a spin-glass system does
not necessarily mean the existence of long-range frustra-
tions among unfrozen vertices in a single macroscopic
state. As a counterexample, in the maximum matching
problem [21] there is no long-range frustrations (R � 0),
but there exist an exponential number of macroscopic
states. It is interesting to notice that the maximum match-
ing problem can be solved by polynomial algorithms. It
appears that the proliferation of macroscopic states is not
the real reason of the computational complexity in finding
a ground-state configuration for a disordered system. As
another example, there are many macroscopic states in a
typical random three-satisfiability formula when 3:921<
�< 4:267 (here � is the clauses-to-variables ratio), but the
survey propagation algorithm is able to find a solution
efficiently [6,7].

On the other hand, we believe the existence of long-
range frustrations among unfrozen vertices will make it
intrinsically difficult for a search algorithm to find a
ground-state configuration. Because of these long-range
effects, it is difficult (a) to determine whether a vertex is
21720
frozen or unfrozen in a macroscopic state and (b) to trace
the percolation cluster associated with a given unfrozen
vertex. Recently, some NP-hard combinatorial optimiza-
tion problems in computer science were studied by the zero
temperature cavity field method [6–9]. We hope the
present work, besides improving our understanding of
finite connectivity spin glasses, will stimulate further ef-
forts in finding more efficient algorithms. We are presently
implementing the physical picture of this Letter into an
algorithm for the vertex-cover problem.
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sharing their numerical results, and to L. Yu and R.
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